Cargando…

Outcome of free digital artery perforator flap transfer for reconstruction of fingertip defects

BACKGROUND: Fingertip defect can be treated with many flaps such as random pattern abdominal flap, retrograde digital artery island flap, V-Y advancement flap, etc. However, swelling in the fingertip, dysfunction of sensation, flexion and extension contracture or injury in the hemi-artery of the fin...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhu, Lei, Xu, Qingjia, Kou, Wei, Ning, Bin, Jia, Tanghong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4232829/
https://www.ncbi.nlm.nih.gov/pubmed/25404772
http://dx.doi.org/10.4103/0019-5413.144228
Descripción
Sumario:BACKGROUND: Fingertip defect can be treated with many flaps such as random pattern abdominal flap, retrograde digital artery island flap, V-Y advancement flap, etc. However, swelling in the fingertip, dysfunction of sensation, flexion and extension contracture or injury in the hemi-artery of the finger usually occurs during the recovery phase. Recently, digital artery perforator flaps have been used for fingertip reconstructions. With the development of super microsurgery techniques, free flaps can be more effective for sensory recovery and durability of the fingertip. MATERIALS AND METHODS: Six cases (six fingers) of fingertip defects were treated with free digital artery perforator flaps of appropriate size and shape from the proximal phalanx. During surgery, the superficial veins at the edge of flap were used as reflux vessels and the branches of the intrinsic nerve and dorsal digital nerve toward the flap were used as sensory nerves. The proximal segment of the digital artery (cutaneous branches) towards the flap was cut off to form the pedicled free flap. The fingertips were reconstructed with the free flap by anastomosing the cutaneous branches of digital artery in the flap with the distal branch or trunk of the digital artery, the flap nerve with the nerve stump and the veins of the flap with the digital artery accompanying veins or the superficial veins in the recipient site. RESULTS: Six flaps survived with successful skin grafting. Patients were followed up for 6-9 months. The appearance and texture of the flaps was satisfactory. The feeling within the six fingers recovered to S4 level (BMRC scale) and the two point discrimination was 3-8 mm. CONCLUSION: Free digital artery perforator flap is suitable for repairing fingertip defect, with good texture, fine fingertip sensation and without sacrificing the branch of the digital artery or nerve.