Cargando…

An agent-based model of the population dynamics of Anopheles gambiae

BACKGROUND: Agent-based models (ABMs) have been used to model the behaviour of individual mosquitoes and other aspects of malaria. In this paper, a conceptual entomological model of the population dynamics of Anopheles gambiae and the agent-based implementations derived from it are described. Hypoth...

Descripción completa

Detalles Bibliográficos
Autores principales: Arifin, SM Niaz, Zhou, Ying, Davis, Gregory J, Gentile, James E, Madey, Gregory R, Collins, Frank H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233045/
https://www.ncbi.nlm.nih.gov/pubmed/25373418
http://dx.doi.org/10.1186/1475-2875-13-424
Descripción
Sumario:BACKGROUND: Agent-based models (ABMs) have been used to model the behaviour of individual mosquitoes and other aspects of malaria. In this paper, a conceptual entomological model of the population dynamics of Anopheles gambiae and the agent-based implementations derived from it are described. Hypothetical vector control interventions (HVCIs) are implemented to target specific activities in the mosquito life cycle, and their impacts are evaluated. METHODS: The core model is described in terms of the complete An. gambiae mosquito life cycle. Primary features include the development and mortality rates in different aquatic and adult stages, the aquatic habitats and oviposition. The density- and age-dependent larval and adult mortality rates (vector senescence) allow the model to capture the age-dependent aspects of the mosquito biology. Details of hypothetical interventions are also described. RESULTS: Results show that with varying coverage and temperature ranges, the hypothetical interventions targeting the gonotrophic cycle stages produce higher impacts than the rest in reducing the potentially infectious female (PIF) mosquito populations, due to their multi-hour mortality impacts and their applicability at multiple gonotrophic cycles. Thus, these stages may be the most effective points of target for newly developed and novel interventions. A combined HVCI with low coverage can produce additive synergistic impacts and can be more effective than isolated HVCIs with comparatively higher coverages. It is emphasized that although the model described in this paper is designed specifically around the mosquito An. gambiae, it could effectively apply to many other major malaria vectors in the world (including the three most efficient nominal anopheline species An. gambiae, Anopheles coluzzii and Anopheles arabiensis) by incorporating a variety of factors (seasonality cycles, rainfall, humidity, etc.). Thus, the model can essentially be treated as a generic Anopheles model, offering an excellent framework for such extensions. The utility of the core model has also been demonstrated by several other applications, each of which investigates well-defined biological research questions across a variety of dimensions (including spatial models, insecticide resistance, and sterile insect techniques).