Cargando…

Dynamic morphology and cytoskeletal protein changes during spontaneous inside-out vesiculation of red blood cell membranes

Vesicle preparations from cell plasma membranes, red blood cells in particular, are extensively used in transport and enzymic studies and in the fields of drug delivery and drug-transport interactions. Here we investigated the role of spectrin–actin, the main components of the red cell cortical cyto...

Descripción completa

Detalles Bibliográficos
Autores principales: Tiffert, Teresa, Lew, Virgilio L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233320/
https://www.ncbi.nlm.nih.gov/pubmed/24615169
http://dx.doi.org/10.1007/s00424-014-1483-5
Descripción
Sumario:Vesicle preparations from cell plasma membranes, red blood cells in particular, are extensively used in transport and enzymic studies and in the fields of drug delivery and drug-transport interactions. Here we investigated the role of spectrin–actin, the main components of the red cell cortical cytoskeleton, in a particular mechanism of vesicle generation found to be relevant to the egress process of Plasmodium falciparum merozoites from infected red blood cells. Plasma membranes from red blood cells lysed in ice-cold media of low ionic strength and free of divalent cations spontaneously and rapidly vesiculate upon incubation at 37 °C rendering high yields of inside-out vesicles. We tested the working hypothesis that the dynamic shape transformations resulted from changes in spectrin–actin configuration within a disintegrating cytoskeletal mesh. We showed that cytoskeletal-free membranes behave like a two-dimensional fluid lacking shape control, that spectrin–actin remain attached to vesiculating membranes for as long as spontaneous movement persists, that most of the spectrin–actin detachment occurs terminally at the time of vesicle sealing and that naked membrane patches increasingly appear during vesiculation. These results support the proposed role of spectrin–actin in spontaneous vesiculation. The implications of these results to membrane dynamics and to the mechanism of merozoite egress are discussed.