Cargando…
Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms
Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233938/ https://www.ncbi.nlm.nih.gov/pubmed/25195618 http://dx.doi.org/10.1111/nph.13008 |
_version_ | 1782344776664743936 |
---|---|
author | Schatz, Daniella Shemi, Adva Rosenwasser, Shilo Sabanay, Helena Wolf, Sharon G Ben-Dor, Shifra Vardi, Assaf |
author_facet | Schatz, Daniella Shemi, Adva Rosenwasser, Shilo Sabanay, Helena Wolf, Sharon G Ben-Dor, Shifra Vardi, Assaf |
author_sort | Schatz, Daniella |
collection | PubMed |
description | Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown. We used diverse techniques, including fluorescence microscopy, transmission electron microscopy, cryoelectron tomography, immunolabeling and biochemical methodologies to investigate the role of autophagy in host–virus interactions. Hallmarks of autophagy are induced during the lytic phase of E. huxleyi viral infection, concomitant with up-regulation of autophagy-related genes (ATG genes). Pretreatment of the infected cells with an autophagy inhibitor causes a major reduction in the production of extracellular viral particles, without reducing viral DNA replication within the cell. The host-encoded Atg8 protein was detected within purified virions, demonstrating the pivotal role of the autophagy-like process in viral assembly and egress. We show that autophagy, which is classically considered as a defense mechanism, is essential for viral propagation and for facilitating a high burst size. This cellular mechanism may have a major impact on the fate of the viral-infected blooms, and therefore on the cycling of nutrients within the marine ecosystem. |
format | Online Article Text |
id | pubmed-4233938 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42339382014-12-03 Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms Schatz, Daniella Shemi, Adva Rosenwasser, Shilo Sabanay, Helena Wolf, Sharon G Ben-Dor, Shifra Vardi, Assaf New Phytol Research Marine photosynthetic microorganisms are the basis of marine food webs and are responsible for nearly 50% of the global primary production. Emiliania huxleyi forms massive oceanic blooms that are routinely terminated by large double-stranded DNA coccolithoviruses. The cellular mechanisms that govern the replication cycle of these giant viruses are largely unknown. We used diverse techniques, including fluorescence microscopy, transmission electron microscopy, cryoelectron tomography, immunolabeling and biochemical methodologies to investigate the role of autophagy in host–virus interactions. Hallmarks of autophagy are induced during the lytic phase of E. huxleyi viral infection, concomitant with up-regulation of autophagy-related genes (ATG genes). Pretreatment of the infected cells with an autophagy inhibitor causes a major reduction in the production of extracellular viral particles, without reducing viral DNA replication within the cell. The host-encoded Atg8 protein was detected within purified virions, demonstrating the pivotal role of the autophagy-like process in viral assembly and egress. We show that autophagy, which is classically considered as a defense mechanism, is essential for viral propagation and for facilitating a high burst size. This cellular mechanism may have a major impact on the fate of the viral-infected blooms, and therefore on the cycling of nutrients within the marine ecosystem. BlackWell Publishing Ltd 2014-12 2014-09-07 /pmc/articles/PMC4233938/ /pubmed/25195618 http://dx.doi.org/10.1111/nph.13008 Text en Copyright © 2014 New Phytologist Trust http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Schatz, Daniella Shemi, Adva Rosenwasser, Shilo Sabanay, Helena Wolf, Sharon G Ben-Dor, Shifra Vardi, Assaf Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title | Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title_full | Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title_fullStr | Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title_full_unstemmed | Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title_short | Hijacking of an autophagy-like process is critical for the life cycle of a DNA virus infecting oceanic algal blooms |
title_sort | hijacking of an autophagy-like process is critical for the life cycle of a dna virus infecting oceanic algal blooms |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233938/ https://www.ncbi.nlm.nih.gov/pubmed/25195618 http://dx.doi.org/10.1111/nph.13008 |
work_keys_str_mv | AT schatzdaniella hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT shemiadva hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT rosenwassershilo hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT sabanayhelena hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT wolfsharong hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT bendorshifra hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms AT vardiassaf hijackingofanautophagylikeprocessiscriticalforthelifecycleofadnavirusinfectingoceanicalgalblooms |