Cargando…

Biased Multicomponent Reactions to Develop Novel Bromodomain Inhibitors

[Image: see text] BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain functi...

Descripción completa

Detalles Bibliográficos
Autores principales: McKeown, Michael R, Shaw, Daniel L, Fu, Harry, Liu, Shuai, Xu, Xiang, Marineau, Jason J, Huang, Yibo, Zhang, Xiaofeng, Buckley, Dennis L, Kadam, Asha, Zhang, Zijuan, Blacklow, Stephen C, Qi, Jun, Zhang, Wei, Bradner, James E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234447/
https://www.ncbi.nlm.nih.gov/pubmed/25314271
http://dx.doi.org/10.1021/jm501120z
Descripción
Sumario:[Image: see text] BET bromodomain inhibition has contributed new insights into gene regulation and emerged as a promising therapeutic strategy in cancer. Structural analogy of early methyl-triazolo BET inhibitors has prompted a need for structurally dissimilar ligands as probes of bromodomain function. Using fluorous-tagged multicomponent reactions, we developed a focused chemical library of bromodomain inhibitors around a 3,5-dimethylisoxazole biasing element with micromolar biochemical IC(50). Iterative synthesis and biochemical assessment allowed optimization of novel BET bromodomain inhibitors based on an imidazo[1,2-a]pyrazine scaffold. Lead compound 32 (UMB-32) binds BRD4 with a K(d) of 550 nM and 724 nM cellular potency in BRD4-dependent lines. Additionally, compound 32 shows potency against TAF1, a bromodomain-containing transcription factor previously unapproached by discovery chemistry. Compound 32 was cocrystallized with BRD4, yielding a 1.56 Å resolution crystal structure. This research showcases new applications of fluorous and multicomponent chemical synthesis for the development of novel epigenetic inhibitors.