Cargando…

Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway

Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated...

Descripción completa

Detalles Bibliográficos
Autores principales: Majumder, Sanjukta, Zappulla, Frank, Silbart, Lawrence K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234737/
https://www.ncbi.nlm.nih.gov/pubmed/25401327
http://dx.doi.org/10.1371/journal.pone.0112796
_version_ 1782344896083918848
author Majumder, Sanjukta
Zappulla, Frank
Silbart, Lawrence K.
author_facet Majumder, Sanjukta
Zappulla, Frank
Silbart, Lawrence K.
author_sort Majumder, Sanjukta
collection PubMed
description Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (R(low)) or a non-virulent (R(high)) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, R(low) exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either R(low) or R(high) exposure. Taken together we conclude that LAMPs isolated from both R(high) and R(low) induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway.
format Online
Article
Text
id pubmed-4234737
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42347372014-11-21 Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway Majumder, Sanjukta Zappulla, Frank Silbart, Lawrence K. PLoS One Research Article Mycoplasma gallisepticum-mediated respiratory inflammation in chickens is associated with accumulation of leukocytes in the tracheal submucosa. However the molecular mechanisms underpinning these changes have not been well described. We hypothesized that the initial inflammatory events are initiated upon ligation of mycoplasma lipid associated membrane proteins (LAMP) to TLRs expressed on chicken tracheal epithelial cells (TEC). To test this hypothesis, live bacteria or LAMPs isolated from a virulent (R(low)) or a non-virulent (R(high)) strain were incubated with primary TECs or chicken tracheae ex vivo. Microarray analysis identified up-regulation of several inflammatory and chemokine genes in TECs as early as 1.5 hours post-exposure. Kinetic analysis using RT-qPCR identified the peak of expression for most genes to be at either 1.5 or 6 hours. Ex-vivo exposure also showed up-regulation of inflammatory genes in epithelial cells by 1.5 hours. Among the commonly up-regulated genes were IL-1β, IL-6, IL-8, IL-12p40, CCL-20, and NOS-2, all of which are important immune-modulators and/or chemo-attractants of leukocytes. While these inflammatory genes were up-regulated in all four treatment groups, R(low) exposed epithelial cells both in vitro and ex vivo showed the most dramatic up-regulation, inducing over 100 unique genes by 5-fold or more in TECs. Upon addition of a TLR-2 inhibitor, LAMP-mediated gene expression of IL-1β and CCL-20 was reduced by almost 5-fold while expression of IL-12p40, IL-6, IL-8 and NOS-2 mRNA was reduced by about 2–3 fold. Conversely, an NF-κB inhibitor abrogated the response entirely for all six genes. miRNA-146a, a negative regulator of TLR-2 signaling, was up-regulated in TECs in response to either R(low) or R(high) exposure. Taken together we conclude that LAMPs isolated from both R(high) and R(low) induced rapid, TLR-2 dependent but transient up-regulation of inflammatory genes in primary TECs through an NF-κB dependent pathway. Public Library of Science 2014-11-17 /pmc/articles/PMC4234737/ /pubmed/25401327 http://dx.doi.org/10.1371/journal.pone.0112796 Text en https://creativecommons.org/publicdomain/zero/1.0/ This is an open-access article distributed under the terms of the Creative Commons Public Domain declaration, which stipulates that, once placed in the public domain, this work may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose.
spellingShingle Research Article
Majumder, Sanjukta
Zappulla, Frank
Silbart, Lawrence K.
Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title_full Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title_fullStr Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title_full_unstemmed Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title_short Mycoplasma gallisepticum Lipid Associated Membrane Proteins Up-regulate Inflammatory Genes in Chicken Tracheal Epithelial Cells via TLR-2 Ligation through an NF-κB Dependent Pathway
title_sort mycoplasma gallisepticum lipid associated membrane proteins up-regulate inflammatory genes in chicken tracheal epithelial cells via tlr-2 ligation through an nf-κb dependent pathway
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4234737/
https://www.ncbi.nlm.nih.gov/pubmed/25401327
http://dx.doi.org/10.1371/journal.pone.0112796
work_keys_str_mv AT majumdersanjukta mycoplasmagallisepticumlipidassociatedmembraneproteinsupregulateinflammatorygenesinchickentrachealepithelialcellsviatlr2ligationthroughannfkbdependentpathway
AT zappullafrank mycoplasmagallisepticumlipidassociatedmembraneproteinsupregulateinflammatorygenesinchickentrachealepithelialcellsviatlr2ligationthroughannfkbdependentpathway
AT silbartlawrencek mycoplasmagallisepticumlipidassociatedmembraneproteinsupregulateinflammatorygenesinchickentrachealepithelialcellsviatlr2ligationthroughannfkbdependentpathway