Cargando…
Estimating the applicability domain of kernel based QSPR models using classical descriptor vectors
Autores principales: | Fechner, NH, Hinselmann, G, Schmiedl, C, Zell, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2008
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235223/ http://dx.doi.org/10.1186/1752-153X-2-S1-P2 |
Ejemplares similares
-
Kernel-based estimation of the applicability domain of QSAR models
por: Fechner, Nikolas, et al.
Publicado: (2010) -
Beyond descriptor vectors: QSAR modelling using structural similarity
por: Zell, Andreas, et al.
Publicado: (2008) -
Estimation of the applicability domain of kernel-based machine learning models for virtual screening
por: Fechner, Nikolas, et al.
Publicado: (2010) -
Adaptive matrix metrics for molecular descriptor assessment in QSPR classification
por: Soto, Axel J, et al.
Publicado: (2010) -
Efficient extraction of canonical spatial relationships using a recursive enumeration of k-subsets
por: Hinselmann, Georg, et al.
Publicado: (2010)