Cargando…
Hybrid fNIRS-EEG based classification of auditory and visual perception processes
For multimodal Human-Computer Interaction (HCI), it is very useful to identify the modalities on which the user is currently processing information. This would enable a system to select complementary output modalities to reduce the user's workload. In this paper, we develop a hybrid Brain-Compu...
Autores principales: | Putze, Felix, Hesslinger, Sebastian, Tse, Chun-Yu, Huang, YunYing, Herff, Christian, Guan, Cuntai, Schultz, Tanja |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235375/ https://www.ncbi.nlm.nih.gov/pubmed/25477777 http://dx.doi.org/10.3389/fnins.2014.00373 |
Ejemplares similares
-
Mental workload during n-back task—quantified in the prefrontal cortex using fNIRS
por: Herff, Christian, et al.
Publicado: (2014) -
fNIRS improves seizure detection in multimodal EEG-fNIRS recordings
por: Sirpal, Parikshat, et al.
Publicado: (2019) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
por: Mughal, Nabeeha Ehsan, et al.
Publicado: (2022) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017)