Cargando…

Cytosolic carboxypeptidase CCP6 is required for megakaryopoiesis by modulating Mad2 polyglutamylation

Bone marrow progenitor cells develop into mature megakaryocytes (MKs) to produce platelets for hemostasis and other physiological functions. However, the molecular mechanisms underlying megakaryopoiesis are not completely defined. We show that cytosolic carboxypeptidase (CCP) 6 deficiency in mice ca...

Descripción completa

Detalles Bibliográficos
Autores principales: Ye, Buqing, Li, Chong, Yang, Zhao, Wang, Yanying, Hao, Junfeng, Wang, Li, Li, Yi, Du, Ying, Hao, Lu, Liu, Benyu, Wang, Shuo, Xia, Pengyan, Huang, Guanling, Sun, Lei, Tian, Yong, Fan, Zusen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Rockefeller University Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4235637/
https://www.ncbi.nlm.nih.gov/pubmed/25332286
http://dx.doi.org/10.1084/jem.20141123
Descripción
Sumario:Bone marrow progenitor cells develop into mature megakaryocytes (MKs) to produce platelets for hemostasis and other physiological functions. However, the molecular mechanisms underlying megakaryopoiesis are not completely defined. We show that cytosolic carboxypeptidase (CCP) 6 deficiency in mice causes enlarged spleens and increased platelet counts with underdeveloped MKs and dysfunctional platelets. The prominent phenotypes of CCP6 deficiency are different from those of CCP1-deficient mice. We found that CCP6 and tubulin tyrosine ligase-like family (TTLL) members TTLL4 and TTLL6 are highly expressed in MKs. We identify Mad2 (mitotic arrest deficient 2) as a novel substrate for CCP6 and not CCP1. Mad2 can be polyglutamylated by TTLL4 and TTLL6 to modulate the maturation of MKs. CCP6 deficiency causes hyperglutamylation of Mad2 to promote activation of Aurora B, leading to suppression of MK maturation. We reveal that Mad2 polyglutamylation plays a critical role in the regulation of megakaryopoiesis.