Cargando…
Computational Surprisal Analysis Speeds-Up Genomic Characterization of Cancer Processes
Surprisal analysis is increasingly being applied for the examination of transcription levels in cellular processes, towards revealing inner network structures and predicting response. But to achieve its full potential, surprisal analysis should be integrated into a wider range computational tool. Th...
Autores principales: | Kravchenko-Balasha, Nataly, Simon, Simcha, Levine, R. D., Remacle, F., Exman, Iaakov |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236016/ https://www.ncbi.nlm.nih.gov/pubmed/25405334 http://dx.doi.org/10.1371/journal.pone.0108549 |
Ejemplares similares
-
Convergence of Logic of Cellular Regulation in Different Premalignant Cells by an Information Theoretic Approach
por: Kravchenko-Balasha, Nataly, et al.
Publicado: (2011) -
Surprisal analysis of genome-wide transcript profiling identifies differentially expressed genes and pathways associated with four growth conditions in the microalga Chlamydomonas
por: Bogaert, Kenny A., et al.
Publicado: (2018) -
Surprisal Analysis of Glioblastoma Multiform (GBM) MicroRNA Dynamics Unveils Tumor Specific Phenotype
por: Zadran, Sohila, et al.
Publicado: (2014) -
A quantum information processing machine for computing by observables
por: Remacle, F., et al.
Publicado: (2023) -
Heterogeneity of Gene Expression in Murine Squamous Cell Carcinoma Development—The Same Tumor by Different Means
por: Cohen, Noam, et al.
Publicado: (2013)