Cargando…

Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)

Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving...

Descripción completa

Detalles Bibliográficos
Autores principales: Kendrick, B. Jacob, DiTullio, Giacomo R., Cyronak, Tyler J., Fulton, James M., Van Mooy, Benjamin A. S., Bidle, Kay D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236053/
https://www.ncbi.nlm.nih.gov/pubmed/25405345
http://dx.doi.org/10.1371/journal.pone.0112134
_version_ 1782345096042119168
author Kendrick, B. Jacob
DiTullio, Giacomo R.
Cyronak, Tyler J.
Fulton, James M.
Van Mooy, Benjamin A. S.
Bidle, Kay D.
author_facet Kendrick, B. Jacob
DiTullio, Giacomo R.
Cyronak, Tyler J.
Fulton, James M.
Van Mooy, Benjamin A. S.
Bidle, Kay D.
author_sort Kendrick, B. Jacob
collection PubMed
description Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance.
format Online
Article
Text
id pubmed-4236053
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-42360532014-11-21 Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae) Kendrick, B. Jacob DiTullio, Giacomo R. Cyronak, Tyler J. Fulton, James M. Van Mooy, Benjamin A. S. Bidle, Kay D. PLoS One Research Article Annual Emiliania huxleyi blooms (along with other coccolithophorid species) play important roles in the global carbon and sulfur cycles. E. huxleyi blooms are routinely terminated by large, host-specific dsDNA viruses, (Emiliania huxleyi Viruses; EhVs), making these host-virus interactions a driving force behind their potential impact on global biogeochemical cycles. Given projected increases in sea surface temperature due to climate change, it is imperative to understand the effects of temperature on E. huxleyi’s susceptibility to viral infection and its production of climatically active dimethylated sulfur species (DSS). Here we demonstrate that a 3°C increase in temperature induces EhV-resistant phenotypes in three E. huxleyi strains and that successful virus infection impacts DSS pool sizes. We also examined cellular polar lipids, given their documented roles in regulating host-virus interactions in this system, and propose that alterations to membrane-bound surface receptors are responsible for the observed temperature-induced resistance. Our findings have potential implications for global biogeochemical cycles in a warming climate and for deciphering the particular mechanism(s) by which some E. huxleyi strains exhibit viral resistance. Public Library of Science 2014-11-18 /pmc/articles/PMC4236053/ /pubmed/25405345 http://dx.doi.org/10.1371/journal.pone.0112134 Text en © 2014 Kendrick et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Kendrick, B. Jacob
DiTullio, Giacomo R.
Cyronak, Tyler J.
Fulton, James M.
Van Mooy, Benjamin A. S.
Bidle, Kay D.
Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title_full Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title_fullStr Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title_full_unstemmed Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title_short Temperature-Induced Viral Resistance in Emiliania huxleyi (Prymnesiophyceae)
title_sort temperature-induced viral resistance in emiliania huxleyi (prymnesiophyceae)
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236053/
https://www.ncbi.nlm.nih.gov/pubmed/25405345
http://dx.doi.org/10.1371/journal.pone.0112134
work_keys_str_mv AT kendrickbjacob temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae
AT ditulliogiacomor temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae
AT cyronaktylerj temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae
AT fultonjamesm temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae
AT vanmooybenjaminas temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae
AT bidlekayd temperatureinducedviralresistanceinemilianiahuxleyiprymnesiophyceae