Cargando…
Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress
OBJECTIVE—: The CX3C chemokine fractalkine (CX3CL1) has a critical role in the development of atherogenesis because apolipoprotein-E–deficient mice lacking CX3CL1 or its receptor CX3CR1 develop smaller plaques and polymorphisms in CX3CR1 are associated with altered risk of cardiovascular disease. CX...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236230/ https://www.ncbi.nlm.nih.gov/pubmed/25359863 http://dx.doi.org/10.1161/ATVBAHA.114.304717 |
_version_ | 1782345131572068352 |
---|---|
author | White, Gemma E. McNeill, Eileen Channon, Keith M. Greaves, David R. |
author_facet | White, Gemma E. McNeill, Eileen Channon, Keith M. Greaves, David R. |
author_sort | White, Gemma E. |
collection | PubMed |
description | OBJECTIVE—: The CX3C chemokine fractalkine (CX3CL1) has a critical role in the development of atherogenesis because apolipoprotein-E–deficient mice lacking CX3CL1 or its receptor CX3CR1 develop smaller plaques and polymorphisms in CX3CR1 are associated with altered risk of cardiovascular disease. CX3CR1 is found on numerous cell types involved in atherogenesis but seems to have a key role in monocyte function. We aimed to elucidate the role of CX3CL1 in human monocyte survival and determine the mechanism by which CX3CL1 spares monocytes from apoptosis. APPROACH AND RESULTS—: Primary human monocytes were prepared from healthy donors and subjected to serum-starvation to induce spontaneous apoptosis. The addition of CX3CL1, but not other chemokines tested, promoted monocyte survival in a dose-dependent manner with full-length CX3CL1 (including the mucin stalk) having a more potent antiapoptotic effect than chemokine-domain CX3CL1. The prosurvival effect of CX3CL1 was evident in both monocyte subsets although nonclassical monocytes were more prone to spontaneous apoptosis. In addition, we found that the effect of CX3CL1 was independent of CX3CR1 genotype. Serum-starvation increased the level of intracellular reactive oxygen species, and this was reduced by the addition of CX3CL1. Inhibition of oxidative stress with an antioxidant prevented monocyte apoptosis, indicating that this is the dominant mechanism of cell death targeted by CX3CL1. CONCLUSIONS—: CX3CL1 has a substantial and highly reproducible antiapoptotic effect on human monocytes, via a mechanism involving a reduction in oxidative stress. This suggests that CX3CL1 is likely to play a key role in human atherogenesis and may provide a novel therapeutic target in cardiovascular disease. |
format | Online Article Text |
id | pubmed-4236230 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Lippincott Williams & Wilkins |
record_format | MEDLINE/PubMed |
spelling | pubmed-42362302014-11-21 Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress White, Gemma E. McNeill, Eileen Channon, Keith M. Greaves, David R. Arterioscler Thromb Vasc Biol Basic Sciences OBJECTIVE—: The CX3C chemokine fractalkine (CX3CL1) has a critical role in the development of atherogenesis because apolipoprotein-E–deficient mice lacking CX3CL1 or its receptor CX3CR1 develop smaller plaques and polymorphisms in CX3CR1 are associated with altered risk of cardiovascular disease. CX3CR1 is found on numerous cell types involved in atherogenesis but seems to have a key role in monocyte function. We aimed to elucidate the role of CX3CL1 in human monocyte survival and determine the mechanism by which CX3CL1 spares monocytes from apoptosis. APPROACH AND RESULTS—: Primary human monocytes were prepared from healthy donors and subjected to serum-starvation to induce spontaneous apoptosis. The addition of CX3CL1, but not other chemokines tested, promoted monocyte survival in a dose-dependent manner with full-length CX3CL1 (including the mucin stalk) having a more potent antiapoptotic effect than chemokine-domain CX3CL1. The prosurvival effect of CX3CL1 was evident in both monocyte subsets although nonclassical monocytes were more prone to spontaneous apoptosis. In addition, we found that the effect of CX3CL1 was independent of CX3CR1 genotype. Serum-starvation increased the level of intracellular reactive oxygen species, and this was reduced by the addition of CX3CL1. Inhibition of oxidative stress with an antioxidant prevented monocyte apoptosis, indicating that this is the dominant mechanism of cell death targeted by CX3CL1. CONCLUSIONS—: CX3CL1 has a substantial and highly reproducible antiapoptotic effect on human monocytes, via a mechanism involving a reduction in oxidative stress. This suggests that CX3CL1 is likely to play a key role in human atherogenesis and may provide a novel therapeutic target in cardiovascular disease. Lippincott Williams & Wilkins 2014-12 2014-11-19 /pmc/articles/PMC4236230/ /pubmed/25359863 http://dx.doi.org/10.1161/ATVBAHA.114.304717 Text en © 2014 The Authors. published on behalf of the American Heart Association, Inc., by Wolters Kluwer. © 2014 The Authors. Arteriosclerosis, Thrombosis, and Vascular Biology is published on behalf of the American Heart Association, Inc., by Wolters Kluwer. This is an open access article under the terms of the Creative Commons Attribution Non-Commercial-NoDervis (//creativecommons.org/licenses/by-nc-nd/3.0/) License, which permits use, distribution, and reproduction in any medium, provided that the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Basic Sciences White, Gemma E. McNeill, Eileen Channon, Keith M. Greaves, David R. Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title | Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title_full | Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title_fullStr | Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title_full_unstemmed | Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title_short | Fractalkine Promotes Human Monocyte Survival via a Reduction in Oxidative Stress |
title_sort | fractalkine promotes human monocyte survival via a reduction in oxidative stress |
topic | Basic Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236230/ https://www.ncbi.nlm.nih.gov/pubmed/25359863 http://dx.doi.org/10.1161/ATVBAHA.114.304717 |
work_keys_str_mv | AT whitegemmae fractalkinepromoteshumanmonocytesurvivalviaareductioninoxidativestress AT mcneilleileen fractalkinepromoteshumanmonocytesurvivalviaareductioninoxidativestress AT channonkeithm fractalkinepromoteshumanmonocytesurvivalviaareductioninoxidativestress AT greavesdavidr fractalkinepromoteshumanmonocytesurvivalviaareductioninoxidativestress |