Cargando…
Composition of weathering crusts on sandstones from natural outcrops and architectonic elements in an urban environment
This work presents mineralogical and chemical characteristics of weathering crusts developed on sandstones exposed to various air pollution conditions. The samples have been collected from sandstone tors in the Carpathian Foothill and from buildings in Kraków. It has been stated that these crusts di...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236627/ https://www.ncbi.nlm.nih.gov/pubmed/25037099 http://dx.doi.org/10.1007/s11356-014-3312-y |
Sumario: | This work presents mineralogical and chemical characteristics of weathering crusts developed on sandstones exposed to various air pollution conditions. The samples have been collected from sandstone tors in the Carpathian Foothill and from buildings in Kraków. It has been stated that these crusts differ in both fabric and composition. The sandstone black crust from tors is rich in organic matter and composed of amorphous silica. Sulphate incrustations accompanied by dust particles have been only sometimes observed. Beneath the black crust, a zone coloured by iron (oxyhydr)oxides occurs. The enrichment of the surface crust in silica and iron compounds protects the rock interior from atmospheric impact. The sandstones from architectonic details are also covered by a thin carbon-rich black crust, but they are visibly loosened. Numerous salts, mainly gypsum and halite, crystallise here, thus enhancing deterioration of the rock. Moreover, spherical particles originated from industrial emissions are much more common. Gypsum in natural outcrops, forms isolated and well-developed crystals, whilst these found on the architectonic details are finer and densely cover the surface. Such diversity reflects various concentrations of acid air pollutants in solutions. |
---|