Cargando…
An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing
A cochlear implant is an implanted electronic device used to provide a sensation of hearing to a person who is hard of hearing. The cochlear implant is often referred to as a bionic ear. This paper presents an undecimated wavelet-based speech coding strategy for cochlear implants, which gives a nove...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236803/ https://www.ncbi.nlm.nih.gov/pubmed/25426428 |
_version_ | 1782345243207663616 |
---|---|
author | Hajiaghababa, Fatemeh Kermani, Saeed Marateb, Hamid R. |
author_facet | Hajiaghababa, Fatemeh Kermani, Saeed Marateb, Hamid R. |
author_sort | Hajiaghababa, Fatemeh |
collection | PubMed |
description | A cochlear implant is an implanted electronic device used to provide a sensation of hearing to a person who is hard of hearing. The cochlear implant is often referred to as a bionic ear. This paper presents an undecimated wavelet-based speech coding strategy for cochlear implants, which gives a novel speech processing strategy. The undecimated wavelet packet transform (UWPT) is computed like the wavelet packet transform except that it does not down-sample the output at each level. The speech data used for the current study consists of 30 consonants, sampled at 16 kbps. The performance of our proposed UWPT method was compared to that of infinite impulse response (IIR) filter in terms of mean opinion score (MOS), short-time objective intelligibility (STOI) measure and segmental signal-to-noise ratio (SNR). Undecimated wavelet had better segmental SNR in about 96% of the input speech data. The MOS of the proposed method was twice in comparison with that of the IIR filter-bank. The statistical analysis revealed that the UWT-based N-of-M strategy significantly improved the MOS, STOI and segmental SNR (P < 0.001) compared with what obtained with the IIR filter-bank based strategies. The advantage of UWPT is that it is shift-invariant which gives a dense approximation to continuous wavelet transform. Thus, the information loss is minimal and that is why the UWPT performance was better than that of traditional filter-bank strategies in speech recognition tests. Results showed that the UWPT could be a promising method for speech coding in cochlear implants, although its computational complexity is higher than that of traditional filter-banks. |
format | Online Article Text |
id | pubmed-4236803 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Medknow Publications & Media Pvt Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42368032014-11-25 An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing Hajiaghababa, Fatemeh Kermani, Saeed Marateb, Hamid R. J Med Signals Sens Original Article A cochlear implant is an implanted electronic device used to provide a sensation of hearing to a person who is hard of hearing. The cochlear implant is often referred to as a bionic ear. This paper presents an undecimated wavelet-based speech coding strategy for cochlear implants, which gives a novel speech processing strategy. The undecimated wavelet packet transform (UWPT) is computed like the wavelet packet transform except that it does not down-sample the output at each level. The speech data used for the current study consists of 30 consonants, sampled at 16 kbps. The performance of our proposed UWPT method was compared to that of infinite impulse response (IIR) filter in terms of mean opinion score (MOS), short-time objective intelligibility (STOI) measure and segmental signal-to-noise ratio (SNR). Undecimated wavelet had better segmental SNR in about 96% of the input speech data. The MOS of the proposed method was twice in comparison with that of the IIR filter-bank. The statistical analysis revealed that the UWT-based N-of-M strategy significantly improved the MOS, STOI and segmental SNR (P < 0.001) compared with what obtained with the IIR filter-bank based strategies. The advantage of UWPT is that it is shift-invariant which gives a dense approximation to continuous wavelet transform. Thus, the information loss is minimal and that is why the UWPT performance was better than that of traditional filter-bank strategies in speech recognition tests. Results showed that the UWPT could be a promising method for speech coding in cochlear implants, although its computational complexity is higher than that of traditional filter-banks. Medknow Publications & Media Pvt Ltd 2014 /pmc/articles/PMC4236803/ /pubmed/25426428 Text en Copyright: © Journal of Medical Signals and Sensors http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Article Hajiaghababa, Fatemeh Kermani, Saeed Marateb, Hamid R. An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title | An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title_full | An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title_fullStr | An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title_full_unstemmed | An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title_short | An Undecimated Wavelet-based Method for Cochlear Implant Speech Processing |
title_sort | undecimated wavelet-based method for cochlear implant speech processing |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4236803/ https://www.ncbi.nlm.nih.gov/pubmed/25426428 |
work_keys_str_mv | AT hajiaghababafatemeh anundecimatedwaveletbasedmethodforcochlearimplantspeechprocessing AT kermanisaeed anundecimatedwaveletbasedmethodforcochlearimplantspeechprocessing AT maratebhamidr anundecimatedwaveletbasedmethodforcochlearimplantspeechprocessing AT hajiaghababafatemeh undecimatedwaveletbasedmethodforcochlearimplantspeechprocessing AT kermanisaeed undecimatedwaveletbasedmethodforcochlearimplantspeechprocessing AT maratebhamidr undecimatedwaveletbasedmethodforcochlearimplantspeechprocessing |