Cargando…
A novel analytical characterization for short-term plasticity parameters in spiking neural networks
Short-term plasticity (STP) is a phenomenon that widely occurs in the neocortex with implications for learning and memory. Based on a widely used STP model, we develop an analytical characterization of the STP parameter space to determine the nature of each synapse (facilitating, depressing, or both...
Autores principales: | O'Brien, Michael J., Thibeault, Corey M., Srinivasa, Narayan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237058/ https://www.ncbi.nlm.nih.gov/pubmed/25477812 http://dx.doi.org/10.3389/fncom.2014.00148 |
Ejemplares similares
-
Analyzing large-scale spiking neural data with HRLAnalysis(™)
por: Thibeault, Corey M., et al.
Publicado: (2014) -
Efficiently passing messages in distributed spiking neural network simulation
por: Thibeault, Corey M., et al.
Publicado: (2013) -
Unsupervised discrimination of patterns in spiking neural networks with excitatory and inhibitory synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2014) -
Stable learning of functional maps in self-organizing spiking neural networks with continuous synaptic plasticity
por: Srinivasa, Narayan, et al.
Publicado: (2013) -
Characterization of Generalizability of Spike Timing Dependent Plasticity Trained Spiking Neural Networks
por: Chakraborty, Biswadeep, et al.
Publicado: (2021)