Cargando…
Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice
Microglia are resident antigen-presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237117/ https://www.ncbi.nlm.nih.gov/pubmed/24677019 http://dx.doi.org/10.1002/glia.22643 |
_version_ | 1782345294749368320 |
---|---|
author | Zhang, Xing-Mei Lund, Harald Mia, Sohel Parsa, Roham Harris, Robert A |
author_facet | Zhang, Xing-Mei Lund, Harald Mia, Sohel Parsa, Roham Harris, Robert A |
author_sort | Zhang, Xing-Mei |
collection | PubMed |
description | Microglia are resident antigen-presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate pathogenic mechanisms and therapeutic effects. We isolated and cultured microglia from adult mouse brains and exposed them to specific combinations of stimulatory molecules and cytokines, the combination of IL-4, IL-10, and TGF-β yielding the optimal regime for induction of an immunosuppressive phenotype (M2). M2 microglia were characterized by decreased expression or production of CD86, PD-L1, nitric oxide, and IL-6, increased expression of PD-L2, and having a potent capacity to retain their phenotype on secondary proinflammatory stimulation. M2 microglia induced regulatory T cells, suppressed T-cell proliferation, and downmodulated M1-associated receptor expression in M1 macrophages. Myelin oligodendrocyte glycoprotein (MOG)-induced EAE was induced in DBA/1 mice and at different time points (0, 5, 12, or 15 days postimmunization) 3 × 10(5) M2 microglia were transferred intranasally. A single transfer of M2 microglia attenuated the severity of established EAE, which was particularly obvious when the cells were injected at 15 days postimmunization. M2 microglia-treated mice had reduced inflammatory responses and less demyelination in the CNS. Our findings demonstrate that adult M2 microglia therapy represents a novel intervention that alleviated established EAE and that this therapeutic principle may have relevance for treatment of MS patients. |
format | Online Article Text |
id | pubmed-4237117 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BlackWell Publishing Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-42371172014-12-15 Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice Zhang, Xing-Mei Lund, Harald Mia, Sohel Parsa, Roham Harris, Robert A Glia Original Research Articles Microglia are resident antigen-presenting cells in the central nervous system (CNS) that either suppress or promote disease depending on their activation phenotype and the microenvironment. Multiple sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the CNS, and experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate pathogenic mechanisms and therapeutic effects. We isolated and cultured microglia from adult mouse brains and exposed them to specific combinations of stimulatory molecules and cytokines, the combination of IL-4, IL-10, and TGF-β yielding the optimal regime for induction of an immunosuppressive phenotype (M2). M2 microglia were characterized by decreased expression or production of CD86, PD-L1, nitric oxide, and IL-6, increased expression of PD-L2, and having a potent capacity to retain their phenotype on secondary proinflammatory stimulation. M2 microglia induced regulatory T cells, suppressed T-cell proliferation, and downmodulated M1-associated receptor expression in M1 macrophages. Myelin oligodendrocyte glycoprotein (MOG)-induced EAE was induced in DBA/1 mice and at different time points (0, 5, 12, or 15 days postimmunization) 3 × 10(5) M2 microglia were transferred intranasally. A single transfer of M2 microglia attenuated the severity of established EAE, which was particularly obvious when the cells were injected at 15 days postimmunization. M2 microglia-treated mice had reduced inflammatory responses and less demyelination in the CNS. Our findings demonstrate that adult M2 microglia therapy represents a novel intervention that alleviated established EAE and that this therapeutic principle may have relevance for treatment of MS patients. BlackWell Publishing Ltd 2014-05 2014-02-14 /pmc/articles/PMC4237117/ /pubmed/24677019 http://dx.doi.org/10.1002/glia.22643 Text en Copyright © 2014 The Authors Glia Published by Wiley Periodicals, Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Articles Zhang, Xing-Mei Lund, Harald Mia, Sohel Parsa, Roham Harris, Robert A Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title | Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title_full | Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title_fullStr | Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title_full_unstemmed | Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title_short | Adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in DBA/1 mice |
title_sort | adoptive transfer of cytokine-induced immunomodulatory adult microglia attenuates experimental autoimmune encephalomyelitis in dba/1 mice |
topic | Original Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237117/ https://www.ncbi.nlm.nih.gov/pubmed/24677019 http://dx.doi.org/10.1002/glia.22643 |
work_keys_str_mv | AT zhangxingmei adoptivetransferofcytokineinducedimmunomodulatoryadultmicrogliaattenuatesexperimentalautoimmuneencephalomyelitisindba1mice AT lundharald adoptivetransferofcytokineinducedimmunomodulatoryadultmicrogliaattenuatesexperimentalautoimmuneencephalomyelitisindba1mice AT miasohel adoptivetransferofcytokineinducedimmunomodulatoryadultmicrogliaattenuatesexperimentalautoimmuneencephalomyelitisindba1mice AT parsaroham adoptivetransferofcytokineinducedimmunomodulatoryadultmicrogliaattenuatesexperimentalautoimmuneencephalomyelitisindba1mice AT harrisroberta adoptivetransferofcytokineinducedimmunomodulatoryadultmicrogliaattenuatesexperimentalautoimmuneencephalomyelitisindba1mice |