Cargando…
Type I Error Control for Tree Classification
Binary tree classification has been useful for classifying the whole population based on the levels of outcome variable that is associated with chosen predictors. Often we start a classification with a large number of candidate predictors, and each predictor takes a number of different cutoff values...
Autores principales: | Jung, Sin-Ho, Chen, Yong, Ahn, Hongshik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Libertas Academica
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237155/ https://www.ncbi.nlm.nih.gov/pubmed/25452689 http://dx.doi.org/10.4137/CIN.S16342 |
Ejemplares similares
-
Spatial heterogeneity of type I error for local cluster detection tests
por: Guttmann, Aline, et al.
Publicado: (2014) -
Power for tests of interaction: effect of raising the Type I error rate
por: Marshall, Stephen W
Publicado: (2007) -
Machine learning analysis plans for randomised controlled trials: detecting treatment effect heterogeneity with strict control of type I error
por: Watson, James A., et al.
Publicado: (2020) -
Type I error rates of multi-arm multi-stage clinical trials: strong control and impact of intermediate outcomes
por: Bratton, Daniel J., et al.
Publicado: (2016) -
Model errors in tree biomass estimates computed with an approximation to a missing covariance matrix
por: Magnussen, Steen, et al.
Publicado: (2015)