Cargando…
Comparison of Results from Different Imputation Techniques for Missing Data from an Anti-Obesity Drug Trial
BACKGROUND: In randomised trials of medical interventions, the most reliable analysis follows the intention-to-treat (ITT) principle. However, the ITT analysis requires that missing outcome data have to be imputed. Different imputation techniques may give different results and some may lead to bias....
Autores principales: | Jørgensen, Anders W., Lundstrøm, Lars H., Wetterslev, Jørn, Astrup, Arne, Gøtzsche, Peter C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237333/ https://www.ncbi.nlm.nih.gov/pubmed/25409438 http://dx.doi.org/10.1371/journal.pone.0111964 |
Ejemplares similares
-
When and how should multiple imputation be used for handling missing data in randomised clinical trials – a practical guide with flowcharts
por: Jakobsen, Janus Christian, et al.
Publicado: (2017) -
SICE: an improved missing data imputation technique
por: Khan, Shahidul Islam, et al.
Publicado: (2020) -
Imputation of missing genotypes: an empirical evaluation of IMPUTE
por: Zhao, Zhenming, et al.
Publicado: (2008) -
Comparison of imputation methods for missing laboratory data in medicine
por: Waljee, Akbar K, et al.
Publicado: (2013) -
Imputation of missing daily rainfall data; A comparison between artificial intelligence and statistical techniques
por: Wangwongchai, Angkool, et al.
Publicado: (2023)