Cargando…

Diffusion of Lexical Change in Social Media

Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to ag...

Descripción completa

Detalles Bibliográficos
Autores principales: Eisenstein, Jacob, O'Connor, Brendan, Smith, Noah A., Xing, Eric P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237389/
https://www.ncbi.nlm.nih.gov/pubmed/25409166
http://dx.doi.org/10.1371/journal.pone.0113114
Descripción
Sumario:Computer-mediated communication is driving fundamental changes in the nature of written language. We investigate these changes by statistical analysis of a dataset comprising 107 million Twitter messages (authored by 2.7 million unique user accounts). Using a latent vector autoregressive model to aggregate across thousands of words, we identify high-level patterns in diffusion of linguistic change over the United States. Our model is robust to unpredictable changes in Twitter's sampling rate, and provides a probabilistic characterization of the relationship of macro-scale linguistic influence to a set of demographic and geographic predictors. The results of this analysis offer support for prior arguments that focus on geographical proximity and population size. However, demographic similarity – especially with regard to race – plays an even more central role, as cities with similar racial demographics are far more likely to share linguistic influence. Rather than moving towards a single unified “netspeak” dialect, language evolution in computer-mediated communication reproduces existing fault lines in spoken American English.