Cargando…

Investigational new insulin glargine 300 U/ml has the same metabolism as insulin glargine 100 U/ml

Insulin glargine is processed in vivo into soluble 21(A)-Gly-human insulin (M1), the principal moiety responsible for metabolic effects, and subsequently into M2. This sub-study compared metabolism and metabolite pharmacokinetic (PK) profiles of investigational new insulin glargine U300 (Gla-300) wi...

Descripción completa

Detalles Bibliográficos
Autores principales: Steinstraesser, A, Schmidt, R, Bergmann, K, Dahmen, R, Becker, R H A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Blackwell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237557/
https://www.ncbi.nlm.nih.gov/pubmed/24571126
http://dx.doi.org/10.1111/dom.12283
Descripción
Sumario:Insulin glargine is processed in vivo into soluble 21(A)-Gly-human insulin (M1), the principal moiety responsible for metabolic effects, and subsequently into M2. This sub-study compared metabolism and metabolite pharmacokinetic (PK) profiles of investigational new insulin glargine U300 (Gla-300) with insulin glargine 100 U/ml (Gla-100, Lantus®, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany) in people with type 1 diabetes. Participants received 0.4 (n = 18) or 0.6 U/kg Gla-300 (n = 12), and 0.4 U/kg Gla-100 (n = 30) once daily in randomized order for 8 days prior to a 36-h euglycaemic clamp. Metabolites were quantified using immunoaffinity enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS). Glargine metabolism was the same regardless of Gla-100 or Gla-300 administration; M1 was confirmed as the principal active moiety circulating in blood. Steady state concentrations of M1 were achieved after 2 days for Gla-100, and 4 days for Gla-300. Steady state M1 values defined prolonged and even flatter PK profiles after Gla-300 administration compared with M1 profiles after Gla-100.