Cargando…
Investigational new insulin glargine 300 U/ml has the same metabolism as insulin glargine 100 U/ml
Insulin glargine is processed in vivo into soluble 21(A)-Gly-human insulin (M1), the principal moiety responsible for metabolic effects, and subsequently into M2. This sub-study compared metabolism and metabolite pharmacokinetic (PK) profiles of investigational new insulin glargine U300 (Gla-300) wi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Blackwell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237557/ https://www.ncbi.nlm.nih.gov/pubmed/24571126 http://dx.doi.org/10.1111/dom.12283 |
Sumario: | Insulin glargine is processed in vivo into soluble 21(A)-Gly-human insulin (M1), the principal moiety responsible for metabolic effects, and subsequently into M2. This sub-study compared metabolism and metabolite pharmacokinetic (PK) profiles of investigational new insulin glargine U300 (Gla-300) with insulin glargine 100 U/ml (Gla-100, Lantus®, Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany) in people with type 1 diabetes. Participants received 0.4 (n = 18) or 0.6 U/kg Gla-300 (n = 12), and 0.4 U/kg Gla-100 (n = 30) once daily in randomized order for 8 days prior to a 36-h euglycaemic clamp. Metabolites were quantified using immunoaffinity enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS). Glargine metabolism was the same regardless of Gla-100 or Gla-300 administration; M1 was confirmed as the principal active moiety circulating in blood. Steady state concentrations of M1 were achieved after 2 days for Gla-100, and 4 days for Gla-300. Steady state M1 values defined prolonged and even flatter PK profiles after Gla-300 administration compared with M1 profiles after Gla-100. |
---|