Cargando…
A meta-learning approach for B-cell conformational epitope prediction
BACKGROUND: One of the major challenges in the field of vaccine design is identifying B-cell epitopes in continuously evolving viruses. Various tools have been developed to predict linear or conformational epitopes, each relying on different physicochemical properties and adopting distinct search st...
Autores principales: | Hu, Yuh-Jyh, Lin, Shun-Chien, Lin, Yu-Lung, Lin, Kuan-Hui, You, Shun-Ning |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237749/ https://www.ncbi.nlm.nih.gov/pubmed/25403375 http://dx.doi.org/10.1186/s12859-014-0378-y |
Ejemplares similares
-
Deep learning methods improve linear B-cell epitope prediction
por: Liu, Tao, et al.
Publicado: (2020) -
Protein-protein interaction prediction using a hybrid feature representation and a stacked generalization scheme
por: Chen, Kuan-Hsi, et al.
Publicado: (2019) -
Residue–Residue Interaction Prediction via Stacked Meta-Learning
por: Chen, Kuan-Hsi, et al.
Publicado: (2021) -
Efficient 3D conformer generation of cyclic peptides formed by a disulfide bond
por: Tao, Huanyu, et al.
Publicado: (2022) -
Positive-unlabeled learning for the prediction of conformational B-cell epitopes
por: Ren, Jing, et al.
Publicado: (2015)