Cargando…

Relationship between post-cardiac arrest myocardial oxidative stress and myocardial dysfunction in the rat

BACKGROUND: Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated th...

Descripción completa

Detalles Bibliográficos
Autores principales: Hackenhaar, Fernanda Schäfer, Fumagalli, Francesca, Li Volti, Giovanni, Sorrenti, Valeria, Russo, Ilaria, Staszewsky, Lidia, Masson, Serge, Latini, Roberto, Ristagno, Giuseppe
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237821/
https://www.ncbi.nlm.nih.gov/pubmed/25134966
http://dx.doi.org/10.1186/s12929-014-0070-6
Descripción
Sumario:BACKGROUND: Reperfusion after resuscitation from cardiac arrest (CA) is an event that increases reactive oxygen species production leading to oxidative stress. More specifically, myocardial oxidative stress may play a role in the severity of post-CA myocardial dysfunction. This study investigated the relationship between myocardial oxidative stress and post-CA myocardial injury and dysfunction in a rat model of CA and cardiopulmonary resuscitation (CPR). Ventricular fibrillation was induced in 26 rats and was untreated for 6 min. CPR, including mechanical chest compression, ventilation, and epinephrine, was then initiated and continued for additional 6 min prior to defibrillations. Resuscitated animals were sacrificed at two h (n = 9), 4 h (n = 6) and 72 h (n = 8) following resuscitation, and plasma collected for assessment of: high sensitivity cardiac troponin T (hs-cTnT), as marker of myocardial injury; isoprostanes (IsoP), as marker of lipid peroxidation; and 8-hydroxyguanosine (8-OHG), as marker of DNA oxidative damage. Hearts were also harvested for measurement of tissue IsoP and 8-OHG. Myocardial function was assessed by echocardiography at the corresponding time points. Additional 8 rats were not subjected to CA and served as baseline controls. RESULTS: Compared to baseline, left ventricular ejection fraction (LVEF) was reduced at 2 and 4 h following resuscitation (p < 0.01), while it was similar at 72 h. Inversely, plasma hs-cTnT increased, compared to baseline, at 2 and 4 h post-CA (p < 0.01), and then recovered at 72 h. Similarly, plasma and myocardial tissue IsoP and 8-OHG levels increased at 2 and 4 h post-resuscitation (p < 0.01 vs. baseline), while returned to baseline 72 h later. Myocardial IsoP were directly related to hs-cTnT levels (r = 0.760, p < 0.01) and inversely related to LVEF (r = -0.770, p < 0.01). Myocardial 8-OHG were also directly related to hs-cTnT levels (r = 0.409, p < 0.05) and inversely related to LVEF (r = -0.548, p < 0.01). CONCLUSIONS: The present study provides evidence that lipid peroxidation and DNA oxidative damage in myocardial tissue are closely related to myocardial injury and LV dysfunction during the initial hours following CA.