Cargando…

SIRT1 overexpression ameliorates a mouse model of SOD1-linked amyotrophic lateral sclerosis via HSF1/HSP70i chaperone system

BACKGROUND: Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refo...

Descripción completa

Detalles Bibliográficos
Autores principales: Watanabe, Seiji, Ageta-Ishihara, Natsumi, Nagatsu, Shinji, Takao, Keizo, Komine, Okiru, Endo, Fumito, Miyakawa, Tsuyoshi, Misawa, Hidemi, Takahashi, Ryosuke, Kinoshita, Makoto, Yamanaka, Koji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4237944/
https://www.ncbi.nlm.nih.gov/pubmed/25167838
http://dx.doi.org/10.1186/s13041-014-0062-1
Descripción
Sumario:BACKGROUND: Dominant mutations in superoxide dismutase 1 (SOD1) cause degeneration of motor neurons in a subset of inherited amyotrophic lateral sclerosis (ALS). The pathogenetic process mediated by misfolded and/or aggregated mutant SOD1 polypeptides is hypothesized to be suppressed by protein refolding. This genetic study is aimed to test whether mutant SOD1-mediated ALS pathology recapitulated in mice could be alleviated by overexpressing a longevity-related deacetylase SIRT1 whose substrates include a transcription factor heat shock factor 1 (HSF1), the master regulator of the chaperone system. RESULTS: We established a line of transgenic mice that chronically overexpress SIRT1 in the brain and spinal cord. While inducible HSP70 (HSP70i) was upregulated in the spinal cord of SIRT1 transgenic mice (PrP-Sirt1), no neurological and behavioral alterations were detected. To test hypothetical benefits of SIRT1 overexpression, we crossbred PrP-Sirt1 mice with two lines of ALS model mice: A high expression line that exhibits a severe phenotype (SOD1(G93A)-H) or a low expression line with a milder phenotype (SOD1(G93A)-L). The Sirt1 transgene conferred longer lifespan without altering the time of symptomatic onset in SOD1(G93A)-L. Biochemical analysis of the spinal cord revealed that SIRT1 induced HSP70i expression through deacetylation of HSF1 and that SOD1(G93A)-L/PrP-Sirt1 double transgenic mice contained less insoluble SOD1 than SOD1(G93A)-L mice. Parallel experiments showed that Sirt1 transgene could not rescue a more severe phenotype of SOD1(G93A)-H transgenic mice partly because their HSP70i level had peaked out. CONCLUSIONS: The genetic supplementation of SIRT1 can ameliorate a mutant SOD1-linked ALS mouse model partly through the activation of the HSF1/HSP70i chaperone system. Future studies shall include testing potential benefits of pharmacological enhancement of the deacetylation activity of SIRT1 after the onset of the symptom.