Cargando…

An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease

Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, howev...

Descripción completa

Detalles Bibliográficos
Autores principales: Schmitter, Daniel, Roche, Alexis, Maréchal, Bénédicte, Ribes, Delphine, Abdulkadir, Ahmed, Bach-Cuadra, Meritxell, Daducci, Alessandro, Granziera, Cristina, Klöppel, Stefan, Maeder, Philippe, Meuli, Reto, Krueger, Gunnar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238047/
https://www.ncbi.nlm.nih.gov/pubmed/25429357
http://dx.doi.org/10.1016/j.nicl.2014.11.001
_version_ 1782345452528599040
author Schmitter, Daniel
Roche, Alexis
Maréchal, Bénédicte
Ribes, Delphine
Abdulkadir, Ahmed
Bach-Cuadra, Meritxell
Daducci, Alessandro
Granziera, Cristina
Klöppel, Stefan
Maeder, Philippe
Meuli, Reto
Krueger, Gunnar
author_facet Schmitter, Daniel
Roche, Alexis
Maréchal, Bénédicte
Ribes, Delphine
Abdulkadir, Ahmed
Bach-Cuadra, Meritxell
Daducci, Alessandro
Granziera, Cristina
Klöppel, Stefan
Maeder, Philippe
Meuli, Reto
Krueger, Gunnar
author_sort Schmitter, Daniel
collection PubMed
description Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease.
format Online
Article
Text
id pubmed-4238047
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-42380472014-11-26 An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease Schmitter, Daniel Roche, Alexis Maréchal, Bénédicte Ribes, Delphine Abdulkadir, Ahmed Bach-Cuadra, Meritxell Daducci, Alessandro Granziera, Cristina Klöppel, Stefan Maeder, Philippe Meuli, Reto Krueger, Gunnar Neuroimage Clin Regular Article Voxel-based morphometry from conventional T1-weighted images has proved effective to quantify Alzheimer's disease (AD) related brain atrophy and to enable fairly accurate automated classification of AD patients, mild cognitive impaired patients (MCI) and elderly controls. Little is known, however, about the classification power of volume-based morphometry, where features of interest consist of a few brain structure volumes (e.g. hippocampi, lobes, ventricles) as opposed to hundreds of thousands of voxel-wise gray matter concentrations. In this work, we experimentally evaluate two distinct volume-based morphometry algorithms (FreeSurfer and an in-house algorithm called MorphoBox) for automatic disease classification on a standardized data set from the Alzheimer's Disease Neuroimaging Initiative. Results indicate that both algorithms achieve classification accuracy comparable to the conventional whole-brain voxel-based morphometry pipeline using SPM for AD vs elderly controls and MCI vs controls, and higher accuracy for classification of AD vs MCI and early vs late AD converters, thereby demonstrating the potential of volume-based morphometry to assist diagnosis of mild cognitive impairment and Alzheimer's disease. Elsevier 2014-11-08 /pmc/articles/PMC4238047/ /pubmed/25429357 http://dx.doi.org/10.1016/j.nicl.2014.11.001 Text en © 2014 The Authors. Published by Elsevier Inc. http://creativecommons.org/licenses/by-nc-nd/3.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
spellingShingle Regular Article
Schmitter, Daniel
Roche, Alexis
Maréchal, Bénédicte
Ribes, Delphine
Abdulkadir, Ahmed
Bach-Cuadra, Meritxell
Daducci, Alessandro
Granziera, Cristina
Klöppel, Stefan
Maeder, Philippe
Meuli, Reto
Krueger, Gunnar
An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title_full An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title_fullStr An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title_full_unstemmed An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title_short An evaluation of volume-based morphometry for prediction of mild cognitive impairment and Alzheimer's disease
title_sort evaluation of volume-based morphometry for prediction of mild cognitive impairment and alzheimer's disease
topic Regular Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238047/
https://www.ncbi.nlm.nih.gov/pubmed/25429357
http://dx.doi.org/10.1016/j.nicl.2014.11.001
work_keys_str_mv AT schmitterdaniel anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT rochealexis anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT marechalbenedicte anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT ribesdelphine anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT abdulkadirahmed anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT bachcuadrameritxell anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT daduccialessandro anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT granzieracristina anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT kloppelstefan anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT maederphilippe anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT meulireto anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT kruegergunnar anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT anevaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT schmitterdaniel evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT rochealexis evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT marechalbenedicte evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT ribesdelphine evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT abdulkadirahmed evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT bachcuadrameritxell evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT daduccialessandro evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT granzieracristina evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT kloppelstefan evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT maederphilippe evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT meulireto evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT kruegergunnar evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease
AT evaluationofvolumebasedmorphometryforpredictionofmildcognitiveimpairmentandalzheimersdisease