Cargando…
Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts
Objective To test the hypothesis that genetically low 25-hydroxyvitamin D concentrations are associated with increased mortality. Design Mendelian randomisation analysis. Setting Copenhagen City Heart Study, Copenhagen General Population Study, and Copenhagen Ischemic Heart Disease Study. Participan...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BMJ Publishing Group Ltd.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238742/ https://www.ncbi.nlm.nih.gov/pubmed/25406188 http://dx.doi.org/10.1136/bmj.g6330 |
_version_ | 1782345504182501376 |
---|---|
author | Afzal, Shoaib Brøndum-Jacobsen, Peter Bojesen, Stig E Nordestgaard, Børge G |
author_facet | Afzal, Shoaib Brøndum-Jacobsen, Peter Bojesen, Stig E Nordestgaard, Børge G |
author_sort | Afzal, Shoaib |
collection | PubMed |
description | Objective To test the hypothesis that genetically low 25-hydroxyvitamin D concentrations are associated with increased mortality. Design Mendelian randomisation analysis. Setting Copenhagen City Heart Study, Copenhagen General Population Study, and Copenhagen Ischemic Heart Disease Study. Participants 95 766 white participants of Danish descent from three cohorts, with median follow-up times of 19.1, 5.8, and 7.9 years, genotyped for genetic variants in DHCR7 and CYP2R1 affecting plasma 25-hydroxyvitamin D concentrations; 35 334 also had plasma 25-hydroxyvitamin D measurements. Participants were followed from study entry through 2013, during which time 10 349 died. Main outcome measures All cause mortality and cause specific mortality, adjusted for common risk factors for all cause mortality based on the World Health Organization’s global health status. Results The multivariable adjusted hazard ratios for a 20 nmol/L lower plasma 25-hydroxyvitamin D concentration were 1.19 (95% confidence interval 1.14 to 1.25) for all cause mortality, 1.18 (1.09 to 1.28) for cardiovascular mortality, 1.12 (1.03 to 1.22) for cancer mortality, and 1.27 (1.15 to 1.40) for other mortality. Each increase in DHCR7/CYP2R1 allele score was associated with a 1.9 nmol/L lower plasma 25-hydroxyvitamin D concentration and with increased all cause, cancer, and other mortality but not with cardiovascular mortality. The odds ratio for a genetically determined 20 nmol/L lower plasma 25-hydroxyvitamin D concentration was 1.30 (1.05 to 1.61) for all cause mortality, with a corresponding observational multivariable adjusted odds ratio of 1.21 (1.11 to 1.31). Corresponding genetic and observational odds ratios were 0.77 (0.55 to 1.08) and 1.13 (1.03 to 1.24) for cardiovascular mortality, 1.43 (1.02 to 1.99) and 1.10 (1.02 to 1.19) for cancer mortality, and 1.44 (1.01 to 2.04) and 1.17 (1.06 to 1.29) for other mortality. The results were robust in sensitivity analyses. Conclusions Genetically low 25-hydroxyvitamin D concentrations were associated with increased all cause mortality, cancer mortality, and other mortality but not with increased cardiovascular mortality. These findings are compatible with the notion that genetically low 25-hydroxyvitamin D concentrations may be causally associated with cancer and other mortality but also suggest that the observational association with cardiovascular mortality could be the result of confounding. |
format | Online Article Text |
id | pubmed-4238742 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BMJ Publishing Group Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-42387422014-12-04 Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts Afzal, Shoaib Brøndum-Jacobsen, Peter Bojesen, Stig E Nordestgaard, Børge G BMJ Research Objective To test the hypothesis that genetically low 25-hydroxyvitamin D concentrations are associated with increased mortality. Design Mendelian randomisation analysis. Setting Copenhagen City Heart Study, Copenhagen General Population Study, and Copenhagen Ischemic Heart Disease Study. Participants 95 766 white participants of Danish descent from three cohorts, with median follow-up times of 19.1, 5.8, and 7.9 years, genotyped for genetic variants in DHCR7 and CYP2R1 affecting plasma 25-hydroxyvitamin D concentrations; 35 334 also had plasma 25-hydroxyvitamin D measurements. Participants were followed from study entry through 2013, during which time 10 349 died. Main outcome measures All cause mortality and cause specific mortality, adjusted for common risk factors for all cause mortality based on the World Health Organization’s global health status. Results The multivariable adjusted hazard ratios for a 20 nmol/L lower plasma 25-hydroxyvitamin D concentration were 1.19 (95% confidence interval 1.14 to 1.25) for all cause mortality, 1.18 (1.09 to 1.28) for cardiovascular mortality, 1.12 (1.03 to 1.22) for cancer mortality, and 1.27 (1.15 to 1.40) for other mortality. Each increase in DHCR7/CYP2R1 allele score was associated with a 1.9 nmol/L lower plasma 25-hydroxyvitamin D concentration and with increased all cause, cancer, and other mortality but not with cardiovascular mortality. The odds ratio for a genetically determined 20 nmol/L lower plasma 25-hydroxyvitamin D concentration was 1.30 (1.05 to 1.61) for all cause mortality, with a corresponding observational multivariable adjusted odds ratio of 1.21 (1.11 to 1.31). Corresponding genetic and observational odds ratios were 0.77 (0.55 to 1.08) and 1.13 (1.03 to 1.24) for cardiovascular mortality, 1.43 (1.02 to 1.99) and 1.10 (1.02 to 1.19) for cancer mortality, and 1.44 (1.01 to 2.04) and 1.17 (1.06 to 1.29) for other mortality. The results were robust in sensitivity analyses. Conclusions Genetically low 25-hydroxyvitamin D concentrations were associated with increased all cause mortality, cancer mortality, and other mortality but not with increased cardiovascular mortality. These findings are compatible with the notion that genetically low 25-hydroxyvitamin D concentrations may be causally associated with cancer and other mortality but also suggest that the observational association with cardiovascular mortality could be the result of confounding. BMJ Publishing Group Ltd. 2014-11-18 /pmc/articles/PMC4238742/ /pubmed/25406188 http://dx.doi.org/10.1136/bmj.g6330 Text en © Afzal et al 2014 http://creativecommons.org/licenses/by-nc/4.0/ This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/. |
spellingShingle | Research Afzal, Shoaib Brøndum-Jacobsen, Peter Bojesen, Stig E Nordestgaard, Børge G Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title | Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title_full | Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title_fullStr | Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title_full_unstemmed | Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title_short | Genetically low vitamin D concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
title_sort | genetically low vitamin d concentrations and increased mortality: mendelian randomisation analysis in three large cohorts |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238742/ https://www.ncbi.nlm.nih.gov/pubmed/25406188 http://dx.doi.org/10.1136/bmj.g6330 |
work_keys_str_mv | AT afzalshoaib geneticallylowvitamindconcentrationsandincreasedmortalitymendelianrandomisationanalysisinthreelargecohorts AT brøndumjacobsenpeter geneticallylowvitamindconcentrationsandincreasedmortalitymendelianrandomisationanalysisinthreelargecohorts AT bojesenstige geneticallylowvitamindconcentrationsandincreasedmortalitymendelianrandomisationanalysisinthreelargecohorts AT nordestgaardbørgeg geneticallylowvitamindconcentrationsandincreasedmortalitymendelianrandomisationanalysisinthreelargecohorts |