Cargando…
Comparing distance metrics for rotation using the k-nearest neighbors algorithm for entropy estimation
Distance metrics facilitate a number of methods for statistical analysis. For statistical mechanical applications, it is useful to be able to compute the distance between two different orientations of a molecule. However, a number of distance metrics for rotation have been employed, and in this stud...
Autor principal: | Huggins, David J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238811/ https://www.ncbi.nlm.nih.gov/pubmed/24311273 http://dx.doi.org/10.1002/jcc.23504 |
Ejemplares similares
-
An Enhanced Quantum K-Nearest Neighbor Classification Algorithm Based on Polar Distance
por: Feng, Congcong, et al.
Publicado: (2023) -
The k conditional nearest neighbor algorithm for classification and class probability estimation
por: Gweon, Hyukjun, et al.
Publicado: (2019) -
Theoretical properties of distance distributions and novel metrics for nearest-neighbor feature selection
por: Dawkins, Bryan A., et al.
Publicado: (2021) -
Gravity-Matching Algorithm Based on K-Nearest Neighbor
por: Gao, Shuaipeng, et al.
Publicado: (2022) -
Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks
por: Han, Yongkoo, et al.
Publicado: (2015)