Cargando…
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation
A multistage clustering and data processing method, SWIFT (detailed in a companion manuscript), has been developed to detect rare subpopulations in large, high-dimensional flow cytometry datasets. An iterative sampling procedure initially fits the data to multidimensional Gaussian distributions, the...
Autores principales: | Mosmann, Tim R, Naim, Iftekhar, Rebhahn, Jonathan, Datta, Suprakash, Cavenaugh, James S, Weaver, Jason M, Sharma, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238823/ https://www.ncbi.nlm.nih.gov/pubmed/24532172 http://dx.doi.org/10.1002/cyto.a.22445 |
Ejemplares similares
-
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design
por: Naim, Iftekhar, et al.
Publicado: (2014) -
SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects
por: Rebhahn, Jonathan A., et al.
Publicado: (2020) -
Competitive SWIFT cluster templates enhance detection of aging changes
por: Rebhahn, Jonathan A., et al.
Publicado: (2015) -
Critical assessment of automated flow cytometry data analysis techniques
por: Aghaeepour, Nima, et al.
Publicado: (2013) -
Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells
por: Pedersen, Natasja Wulff, et al.
Publicado: (2017)