Cargando…
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design
We present a model-based clustering method, SWIFT (Scalable Weighted Iterative Flow-clustering Technique), for digesting high-dimensional large-sized datasets obtained via modern flow cytometry into more compact representations that are well-suited for further automated or manual analysis. Key attri...
Autores principales: | Naim, Iftekhar, Datta, Suprakash, Rebhahn, Jonathan, Cavenaugh, James S, Mosmann, Tim R, Sharma, Gaurav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4238829/ https://www.ncbi.nlm.nih.gov/pubmed/24677621 http://dx.doi.org/10.1002/cyto.a.22446 |
Ejemplares similares
-
SWIFT—Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation
por: Mosmann, Tim R, et al.
Publicado: (2014) -
SwiftReg cluster registration automatically reduces flow cytometry data variability including batch effects
por: Rebhahn, Jonathan A., et al.
Publicado: (2020) -
Competitive SWIFT cluster templates enhance detection of aging changes
por: Rebhahn, Jonathan A., et al.
Publicado: (2015) -
Critical assessment of automated flow cytometry data analysis techniques
por: Aghaeepour, Nima, et al.
Publicado: (2013) -
Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells
por: Pedersen, Natasja Wulff, et al.
Publicado: (2017)