Cargando…

Development of an enzyme linked immunosorbent assay for detection of cyathane diterpenoids

BACKGROUND: So-called cyathane type diterpenoids are produced as secondary metabolites by basidiomycetes. Based on their antibacterial, fungicidal, and cytotoxic properties, cyathane type terpenoids represent interesting target compounds in fungal biotechnology. RESULTS: An indirect competitive enzy...

Descripción completa

Detalles Bibliográficos
Autores principales: Shen, Tian, Hof, Lena M, Hausmann, Heike, Stadler, Marc, Zorn, Holger
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239385/
https://www.ncbi.nlm.nih.gov/pubmed/25404227
http://dx.doi.org/10.1186/s12896-014-0098-4
Descripción
Sumario:BACKGROUND: So-called cyathane type diterpenoids are produced as secondary metabolites by basidiomycetes. Based on their antibacterial, fungicidal, and cytotoxic properties, cyathane type terpenoids represent interesting target compounds in fungal biotechnology. RESULTS: An indirect competitive enzyme linked immunosorbent assay has been developed for detection of cyathane type diterpenoids. Rabbit polyclonal antibodies were raised against a mixture of striatal A and B conjugated to bovine serum albumin. The conditions for direct attachment of the hapten striatal B to a solid phase by passive adsorption were optimized. The cross reactivities of the striatals A, C and D, of the striatins A and B, and of the erinacines C and P to striatal B were determined. The validation study showed that the ELISA was precise and sensitive. The average IC(50) of striatal B was 36.0 ng mL(−1) with an inter-assay coefficient of variation (CV) of 13.2% (n = 5). Recoveries from striatal B spiked samples in the assay were in the range of 97.3 – 125.9%. A good correlation between the striatal B concentration measured by the ELISA and by HPLC-DAD (y = 1.1122× – 0.1585, R(2) = 0.9942) was obtained from linear regression analysis. The suitability of the ELISA for detection of cyathane type diterpenoids in submerged cultures and fruiting bodies of H. erinaceus was studied. It showed cross reactivity with supernatants from submerged cultures and extracts thereof, but did not show cross reactivity with extracts from fruiting bodies. CONCLUSIONS: The developed method is appropriate for qualitative and quantitative detection of cyathane diterpenoids in complex mixtures. Due to its high sensitivity and specificity, it represents an ideal screening method for discovering new cyathane diterpenoids and new potential producers of them. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12896-014-0098-4) contains supplementary material, which is available to authorized users.