Cargando…

Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells

BACKGROUND: Fruits of Lycium ruthenicum Murr is a health food and also used as a folk to treat heart disease, abnormal menstruation and menopause in Tibetan, China. However; whether L. ruthenicum Murr fruits methanolic extracts (LFME) protect LLC-PK1 porcine renal tubules cells from AAPH-induced oxi...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Jia-Le, Gao, Yang, Xu, Jianguo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239733/
https://www.ncbi.nlm.nih.gov/pubmed/25422556
http://dx.doi.org/10.4103/0973-1296.141790
_version_ 1782345628944171008
author Song, Jia-Le
Gao, Yang
Xu, Jianguo
author_facet Song, Jia-Le
Gao, Yang
Xu, Jianguo
author_sort Song, Jia-Le
collection PubMed
description BACKGROUND: Fruits of Lycium ruthenicum Murr is a health food and also used as a folk to treat heart disease, abnormal menstruation and menopause in Tibetan, China. However; whether L. ruthenicum Murr fruits methanolic extracts (LFME) protect LLC-PK1 porcine renal tubules cells from AAPH-induced oxidative damage has not been investigated. OBJECTIVE: To investigate the protective effects of L. ruthenicum Murr fruits methanolic extracts (LFME) against 2, 2’- azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS AND METHODS: LLC-PK1 cells were co-incubated with AAPH (1mM) and different concentrations of LFMW together for 24 h. Cell viability was determined by MTT assay. Total intercellular reactive oxygen species (ROS) levels and lipid peroxidation were measured using a fluorescent probe 2’, 7’-dichlorfluorescein-diacetate (DCFH-DA) and the TBA reactive substance (TBARS) assay, respectively. The endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and intercellular glutathione (GSH) levels were determined using commercial assay kits according to the manufacturer's instructions. RESULTS: LFME did not show a significant cytotoxic effect and increased the viability of LLC-PK1 cells in a concentration-dependent manner. LFME also decreased the total intercellular levels of ROS, reduced lipid peroxidation and increased the GSH levels as well as the activities of endogenous antioxidant enzymes to protect LLC-PK1 cells against AAPH-induced oxidative damage. CONCLUSION: The results from the present study indicated that LFME is an effective ROS scavenger to protect LLC-PK1 cells against AAPH-induced oxidative damage through decreasing ROS generation, reducing lipid peroxidation and up-regulation of endogenous GSH levels and antioxidant enzymes.
format Online
Article
Text
id pubmed-4239733
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Medknow Publications & Media Pvt Ltd
record_format MEDLINE/PubMed
spelling pubmed-42397332014-11-24 Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells Song, Jia-Le Gao, Yang Xu, Jianguo Pharmacogn Mag Original Article BACKGROUND: Fruits of Lycium ruthenicum Murr is a health food and also used as a folk to treat heart disease, abnormal menstruation and menopause in Tibetan, China. However; whether L. ruthenicum Murr fruits methanolic extracts (LFME) protect LLC-PK1 porcine renal tubules cells from AAPH-induced oxidative damage has not been investigated. OBJECTIVE: To investigate the protective effects of L. ruthenicum Murr fruits methanolic extracts (LFME) against 2, 2’- azobis (2-amidinopropane) dihydrochloride (AAPH)-induced oxidative damage in renal proximal tubule LLC-PK1 cells. MATERIALS AND METHODS: LLC-PK1 cells were co-incubated with AAPH (1mM) and different concentrations of LFMW together for 24 h. Cell viability was determined by MTT assay. Total intercellular reactive oxygen species (ROS) levels and lipid peroxidation were measured using a fluorescent probe 2’, 7’-dichlorfluorescein-diacetate (DCFH-DA) and the TBA reactive substance (TBARS) assay, respectively. The endogenous antioxidant enzymes including catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH-px) and intercellular glutathione (GSH) levels were determined using commercial assay kits according to the manufacturer's instructions. RESULTS: LFME did not show a significant cytotoxic effect and increased the viability of LLC-PK1 cells in a concentration-dependent manner. LFME also decreased the total intercellular levels of ROS, reduced lipid peroxidation and increased the GSH levels as well as the activities of endogenous antioxidant enzymes to protect LLC-PK1 cells against AAPH-induced oxidative damage. CONCLUSION: The results from the present study indicated that LFME is an effective ROS scavenger to protect LLC-PK1 cells against AAPH-induced oxidative damage through decreasing ROS generation, reducing lipid peroxidation and up-regulation of endogenous GSH levels and antioxidant enzymes. Medknow Publications & Media Pvt Ltd 2014 /pmc/articles/PMC4239733/ /pubmed/25422556 http://dx.doi.org/10.4103/0973-1296.141790 Text en Copyright: © Pharmacognosy Magazine http://creativecommons.org/licenses/by-nc-sa/3.0 This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Article
Song, Jia-Le
Gao, Yang
Xu, Jianguo
Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title_full Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title_fullStr Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title_full_unstemmed Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title_short Protective effects of methanolic extract form fruits of Lycium ruthenicum Murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in LLC-PK1 cells
title_sort protective effects of methanolic extract form fruits of lycium ruthenicum murr on 2,2’-azobis (2-amidinopropane) dihydrochloride-induced oxidative stress in llc-pk1 cells
topic Original Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239733/
https://www.ncbi.nlm.nih.gov/pubmed/25422556
http://dx.doi.org/10.4103/0973-1296.141790
work_keys_str_mv AT songjiale protectiveeffectsofmethanolicextractformfruitsoflyciumruthenicummurron22azobis2amidinopropanedihydrochlorideinducedoxidativestressinllcpk1cells
AT gaoyang protectiveeffectsofmethanolicextractformfruitsoflyciumruthenicummurron22azobis2amidinopropanedihydrochlorideinducedoxidativestressinllcpk1cells
AT xujianguo protectiveeffectsofmethanolicextractformfruitsoflyciumruthenicummurron22azobis2amidinopropanedihydrochlorideinducedoxidativestressinllcpk1cells