Cargando…

Material and mechanical factors: new strategy in cellular neurogenesis

Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharmacological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracel...

Descripción completa

Detalles Bibliográficos
Autores principales: Stoll, Hillary, Kwon, Il Keun, Lim, Jung Yul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239770/
https://www.ncbi.nlm.nih.gov/pubmed/25422642
http://dx.doi.org/10.4103/1673-5374.143426
Descripción
Sumario:Since damaged neural circuits are not generally self-recovered, developing methods to stimulate neurogenesis is critically required. Most studies have examined the effects of soluble pharmacological factors on the cellular neurogenesis. On the other hand, it is now recognized that the other extracellular factors, including material and mechanical cues, also have a strong potential to induce cellular neurogenesis. This article will review recent data on the material (chemical patterning, micro/nano-topography, carbon nanotube, graphene) and mechanical (static cue from substrate stiffness, dynamic cue from stretch and flow shear) stimulations of cellular neurogenesis. These approaches may provide new neural regenerative medicine protocols. Scaffolding material templates capable of triggering cellular neurogenesis can be explored in the presence of neurogenesis-stimulatory mechanical environments, and also with conventional soluble factors, to enhance axonal growth and neural network formation in neural tissue engineering.