Cargando…

A Study of Concrete Slab Damage Detection Based on the Electromechanical Impedance Method

Piezoelectric lead zirconate titanate (PZT) is being gradually applied into practice as a new intelligent material for structural health monitoring. In order to study the damage detection properties of PZT on concrete slabs, simply supported reinforced concrete slabs with piezoelectric patches attac...

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Xianyan, Zhu, Hongping, Wang, Dansheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239913/
https://www.ncbi.nlm.nih.gov/pubmed/25341438
http://dx.doi.org/10.3390/s141019897
Descripción
Sumario:Piezoelectric lead zirconate titanate (PZT) is being gradually applied into practice as a new intelligent material for structural health monitoring. In order to study the damage detection properties of PZT on concrete slabs, simply supported reinforced concrete slabs with piezoelectric patches attached to their surfaces were chosen as the research objects and the Electromechanical Impedance method (EMI) was adopted for research. Five kinds of damage condition were designed to test the impedance values at different frequency bands. Consistent rules are found by calculation and analysis. Both the root mean square deviation (RMSD) and the correlation coefficient deviation (CCD) damage indices are capable of detecting the structural damage. The newly proposed damage index R(y)/R(x) can also predict the changes well. The numerical and experimental studies verify that the Electromechanical Impedance method can accurately predict changes in the amount of damage in reinforced concrete slabs. The damage index changes regularly with the distance of damages to the sensor. This relationship can be used to determine the damage location. The newly proposed damage index R(y)/R(x) is accurate in determining the damage location.