Cargando…

Detection of Cracks on Tomatoes Using a Hyperspectral Near-Infrared Reflectance Imaging System

The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detecting cuticle cracks on tomatoes. A hyperspectral NIR reflectance imaging system that analyzed the spectral region of 1000–1700 nm was used to obtain hyperspectral reflecta...

Descripción completa

Detalles Bibliográficos
Autores principales: Lee, Hoonsoo, Kim, Moon S., Jeong, Danhee, Delwiche, Stephen R., Chao, Kuanglin, Cho, Byoung-Kwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239932/
https://www.ncbi.nlm.nih.gov/pubmed/25310472
http://dx.doi.org/10.3390/s141018837
Descripción
Sumario:The objective of this study was to evaluate the use of hyperspectral near-infrared (NIR) reflectance imaging techniques for detecting cuticle cracks on tomatoes. A hyperspectral NIR reflectance imaging system that analyzed the spectral region of 1000–1700 nm was used to obtain hyperspectral reflectance images of 224 tomatoes: 112 with and 112 without cracks along the stem-scar region. The hyperspectral images were subjected to partial least square discriminant analysis (PLS-DA) to classify and detect cracks on the tomatoes. Two morphological features, roundness (R) and minimum-maximum distance (D), were calculated from the PLS-DA images to quantify the shape of the stem scar. Linear discriminant analysis (LDA) and a support vector machine (SVM) were then used to classify R and D. The results revealed 94.6% and 96.4% accuracy for classifications made using LDA and SVM, respectively, for tomatoes with and without crack defects. These data suggest that the hyperspectral near-infrared reflectance imaging system, in addition to traditional NIR spectroscopy-based methods, could potentially be used to detect crack defects on tomatoes and perform quality assessments.