Cargando…

Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator

In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to mainta...

Descripción completa

Detalles Bibliográficos
Autores principales: Drenjanac, Domagoj, Tomic, Slobodanka, Agüera, Juan, Perez-Ruiz, Manuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239937/
https://www.ncbi.nlm.nih.gov/pubmed/25340450
http://dx.doi.org/10.3390/s141019767
_version_ 1782345668603412480
author Drenjanac, Domagoj
Tomic, Slobodanka
Agüera, Juan
Perez-Ruiz, Manuel
author_facet Drenjanac, Domagoj
Tomic, Slobodanka
Agüera, Juan
Perez-Ruiz, Manuel
author_sort Drenjanac, Domagoj
collection PubMed
description In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach.
format Online
Article
Text
id pubmed-4239937
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-42399372014-11-21 Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator Drenjanac, Domagoj Tomic, Slobodanka Agüera, Juan Perez-Ruiz, Manuel Sensors (Basel) Article In the new agricultural scenarios, the interaction between autonomous tractors and a human operator is important when they jointly perform a task. Obtaining and exchanging accurate localization information between autonomous tractors and the human operator, working as a team, is a critical to maintaining safety, synchronization, and efficiency during the execution of a mission. An advanced localization system for both entities involved in the joint work, i.e., the autonomous tractors and the human operator, provides a basis for meeting the task requirements. In this paper, different localization techniques for a human operator and an autonomous tractor in a field environment were tested. First, we compared the localization performances of two global navigation satellite systems’ (GNSS) receivers carried by the human operator: (1) an internal GNSS receiver built into a handheld device; and (2) an external DGNSS receiver with centimeter-level accuracy. To investigate autonomous tractor localization, a real-time kinematic (RTK)-based localization system installed on autonomous tractor developed for agricultural applications was evaluated. Finally, a hybrid localization approach, which combines distance estimates obtained using a wireless scheme with the position of an autonomous tractor obtained using an RTK-GNSS system, is proposed. The hybrid solution is intended for user localization in unstructured environments in which the GNSS signal is obstructed. The hybrid localization approach has two components: (1) a localization algorithm based on the received signal strength indication (RSSI) from the wireless environment; and (2) the acquisition of the tractor RTK coordinates when the human operator is near the tractor. In five RSSI tests, the best result achieved was an average localization error of 4 m. In tests of real-time position correction between rows, RMS error of 2.4 cm demonstrated that the passes were straight, as was desired for the autonomous tractor. From these preliminary results, future work will address the use of autonomous tractor localization in the hybrid localization approach. MDPI 2014-10-22 /pmc/articles/PMC4239937/ /pubmed/25340450 http://dx.doi.org/10.3390/s141019767 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Drenjanac, Domagoj
Tomic, Slobodanka
Agüera, Juan
Perez-Ruiz, Manuel
Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title_full Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title_fullStr Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title_full_unstemmed Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title_short Wi-Fi and Satellite-Based Location Techniques for Intelligent Agricultural Machinery Controlled by a Human Operator
title_sort wi-fi and satellite-based location techniques for intelligent agricultural machinery controlled by a human operator
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239937/
https://www.ncbi.nlm.nih.gov/pubmed/25340450
http://dx.doi.org/10.3390/s141019767
work_keys_str_mv AT drenjanacdomagoj wifiandsatellitebasedlocationtechniquesforintelligentagriculturalmachinerycontrolledbyahumanoperator
AT tomicslobodanka wifiandsatellitebasedlocationtechniquesforintelligentagriculturalmachinerycontrolledbyahumanoperator
AT aguerajuan wifiandsatellitebasedlocationtechniquesforintelligentagriculturalmachinerycontrolledbyahumanoperator
AT perezruizmanuel wifiandsatellitebasedlocationtechniquesforintelligentagriculturalmachinerycontrolledbyahumanoperator