Cargando…
Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring
Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239952/ https://www.ncbi.nlm.nih.gov/pubmed/25325337 http://dx.doi.org/10.3390/s141019307 |
_version_ | 1782345671978778624 |
---|---|
author | Zhang, Wenyu Zhang, Zhenjiang Qi, Dapeng Liu, Yun |
author_facet | Zhang, Wenyu Zhang, Zhenjiang Qi, Dapeng Liu, Yun |
author_sort | Zhang, Wenyu |
collection | PubMed |
description | Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. |
format | Online Article Text |
id | pubmed-4239952 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-42399522014-11-21 Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring Zhang, Wenyu Zhang, Zhenjiang Qi, Dapeng Liu, Yun Sensors (Basel) Article Cracks are an important indicator reflecting the safety status of infrastructures. This paper presents an automatic crack detection and classification methodology for subway tunnel safety monitoring. With the application of high-speed complementary metal-oxide-semiconductor (CMOS) industrial cameras, the tunnel surface can be captured and stored in digital images. In a next step, the local dark regions with potential crack defects are segmented from the original gray-scale images by utilizing morphological image processing techniques and thresholding operations. In the feature extraction process, we present a distance histogram based shape descriptor that effectively describes the spatial shape difference between cracks and other irrelevant objects. Along with other features, the classification results successfully remove over 90% misidentified objects. Also, compared with the original gray-scale images, over 90% of the crack length is preserved in the last output binary images. The proposed approach was tested on the safety monitoring for Beijing Subway Line 1. The experimental results revealed the rules of parameter settings and also proved that the proposed approach is effective and efficient for automatic crack detection and classification. MDPI 2014-10-16 /pmc/articles/PMC4239952/ /pubmed/25325337 http://dx.doi.org/10.3390/s141019307 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Zhang, Wenyu Zhang, Zhenjiang Qi, Dapeng Liu, Yun Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title | Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title_full | Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title_fullStr | Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title_full_unstemmed | Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title_short | Automatic Crack Detection and Classification Method for Subway Tunnel Safety Monitoring |
title_sort | automatic crack detection and classification method for subway tunnel safety monitoring |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4239952/ https://www.ncbi.nlm.nih.gov/pubmed/25325337 http://dx.doi.org/10.3390/s141019307 |
work_keys_str_mv | AT zhangwenyu automaticcrackdetectionandclassificationmethodforsubwaytunnelsafetymonitoring AT zhangzhenjiang automaticcrackdetectionandclassificationmethodforsubwaytunnelsafetymonitoring AT qidapeng automaticcrackdetectionandclassificationmethodforsubwaytunnelsafetymonitoring AT liuyun automaticcrackdetectionandclassificationmethodforsubwaytunnelsafetymonitoring |