Cargando…

Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method

We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in c...

Descripción completa

Detalles Bibliográficos
Autores principales: Valle, Denis, Baiser, Benjamin, Woodall, Christopher W, Chazdon, Robin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BlackWell Publishing Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240467/
https://www.ncbi.nlm.nih.gov/pubmed/25328064
http://dx.doi.org/10.1111/ele.12380
_version_ 1782345716222394368
author Valle, Denis
Baiser, Benjamin
Woodall, Christopher W
Chazdon, Robin
author_facet Valle, Denis
Baiser, Benjamin
Woodall, Christopher W
Chazdon, Robin
author_sort Valle, Denis
collection PubMed
description We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site-specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances.
format Online
Article
Text
id pubmed-4240467
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BlackWell Publishing Ltd
record_format MEDLINE/PubMed
spelling pubmed-42404672014-12-22 Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method Valle, Denis Baiser, Benjamin Woodall, Christopher W Chazdon, Robin Ecol Lett Letters We propose a novel multivariate method to analyse biodiversity data based on the Latent Dirichlet Allocation (LDA) model. LDA, a probabilistic model, reduces assemblages to sets of distinct component communities. It produces easily interpretable results, can represent abrupt and gradual changes in composition, accommodates missing data and allows for coherent estimates of uncertainty. We illustrate our method using tree data for the eastern United States and from a tropical successional chronosequence. The model is able to detect pervasive declines in the oak community in Minnesota and Indiana, potentially due to fire suppression, increased growing season precipitation and herbivory. The chronosequence analysis is able to delineate clear successional trends in species composition, while also revealing that site-specific factors significantly impact these successional trajectories. The proposed method provides a means to decompose and track the dynamics of species assemblages along temporal and spatial gradients, including effects of global change and forest disturbances. BlackWell Publishing Ltd 2014-12 2014-10-17 /pmc/articles/PMC4240467/ /pubmed/25328064 http://dx.doi.org/10.1111/ele.12380 Text en © 2014 The Authors. Ecology Letters published by John Wiley & Sons Ltd and CNRS. http://creativecommons.org/licenses/by/3.0/ This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Letters
Valle, Denis
Baiser, Benjamin
Woodall, Christopher W
Chazdon, Robin
Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title_full Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title_fullStr Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title_full_unstemmed Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title_short Decomposing biodiversity data using the Latent Dirichlet Allocation model, a probabilistic multivariate statistical method
title_sort decomposing biodiversity data using the latent dirichlet allocation model, a probabilistic multivariate statistical method
topic Letters
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240467/
https://www.ncbi.nlm.nih.gov/pubmed/25328064
http://dx.doi.org/10.1111/ele.12380
work_keys_str_mv AT valledenis decomposingbiodiversitydatausingthelatentdirichletallocationmodelaprobabilisticmultivariatestatisticalmethod
AT baiserbenjamin decomposingbiodiversitydatausingthelatentdirichletallocationmodelaprobabilisticmultivariatestatisticalmethod
AT woodallchristopherw decomposingbiodiversitydatausingthelatentdirichletallocationmodelaprobabilisticmultivariatestatisticalmethod
AT chazdonrobin decomposingbiodiversitydatausingthelatentdirichletallocationmodelaprobabilisticmultivariatestatisticalmethod