Cargando…
Interfacial atomic structure analysis at sub-angstrom resolution using aberration-corrected STEM
The atomic structure of a SiGe/Si epitaxial interface grown via molecular beam epitaxy on a single crystal silicon substrate was investigated using an aberration-corrected scanning transmittance electron microscope equipped with a high-angle annular dark-field detector and an energy-dispersive spect...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4240948/ https://www.ncbi.nlm.nih.gov/pubmed/25426003 http://dx.doi.org/10.1186/1556-276X-9-578 |
Sumario: | The atomic structure of a SiGe/Si epitaxial interface grown via molecular beam epitaxy on a single crystal silicon substrate was investigated using an aberration-corrected scanning transmittance electron microscope equipped with a high-angle annular dark-field detector and an energy-dispersive spectrometer. The accuracy required for compensation of the various residual aberration coefficients to achieve sub-angstrom resolution with the electron optics system was also evaluated. It was found that the interfacial layer was composed of a silicon single crystal, connected coherently to epitaxial SiGe nanolaminates. In addition, the distance between the dumbbell structures of the Si and Ge atoms was approximately 0.136 nm at the SiGe/Si interface in the [110] orientation. The corresponding fast Fourier transform exhibited a sub-angstrom scale point resolution of 0.78 Å. Furthermore, the relative positions of the atoms in the chemical composition line scan signals could be directly interpreted from the corresponding incoherent high-angle annular dark-field image. |
---|