Cargando…
A Weighted Two-Level Bregman Method with Dictionary Updating for Nonconvex MR Image Reconstruction
Nonconvex optimization has shown that it needs substantially fewer measurements than l (1) minimization for exact recovery under fixed transform/overcomplete dictionary. In this work, two efficient numerical algorithms which are unified by the method named weighted two-level Bregman method with dict...
Autores principales: | Liu, Qiegen, Peng, Xi, Liu, Jianbo, Yang, Dingcheng, Liang, Dong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241317/ https://www.ncbi.nlm.nih.gov/pubmed/25431583 http://dx.doi.org/10.1155/2014/128596 |
Ejemplares similares
-
MR Image Reconstruction Based on Iterative Split Bregman Algorithm and Nonlocal Total Variation
por: Gopi, Varun P., et al.
Publicado: (2013) -
A Dictionary Learning Method with Total Generalized Variation for MRI Reconstruction
por: Lu, Hongyang, et al.
Publicado: (2016) -
An Improved Total Variation Minimization Method Using Prior Images and Split-Bregman Method in CT Reconstruction
por: Deng, Luzhen, et al.
Publicado: (2016) -
From convexity to nonconvexity
por: Gilbert, R, et al.
Publicado: (2001) -
Topics in Nonconvex Optimization
por: Mishra, Shashi Kant
Publicado: (2011)