Cargando…

Targeting silymarin for improved hepatoprotective activity through chitosan nanoparticles

INTRODUCTION: Silymarin is one of the best known hepatoprotective drugs, which is obtained from the seeds of Silybum marianum L., Family: Asteraceae or Compositae. The plant has traditionally been used for centuries as a natural remedy for liver and biliary tract diseases. The aim of the present inv...

Descripción completa

Detalles Bibliográficos
Autores principales: Gupta, Swati, Singh, Shailendra Kumar, Girotra, Priti
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241620/
https://www.ncbi.nlm.nih.gov/pubmed/25426436
http://dx.doi.org/10.4103/2230-973X.143113
Descripción
Sumario:INTRODUCTION: Silymarin is one of the best known hepatoprotective drugs, which is obtained from the seeds of Silybum marianum L., Family: Asteraceae or Compositae. The plant has traditionally been used for centuries as a natural remedy for liver and biliary tract diseases. The aim of the present investigation was to enhance the hepatoprotective activity of silymarin by incorporating it in chitosan (Ch) nanoparticles (NPs) for passive targeted delivery, thereby prolonging its retention time. MATERIALS AND METHODS: Silymarin loaded NPs were prepared by ionic gelation technique, which were then optimized using a central composite design in order to minimize the particle size and maximize the drug entrapment efficiency. The optimized formulation was evaluated for in vitro drug release study and in vitro study on Swiss Albino mice using carbon tetrachloride (CCL(4)) induced hepatotoxicity model. RESULTS: In vitro dissolution studies illustrated sustained, zero order drug release from optimized formulation; also its therapeutic potential was amplified during in vitro studies on Swiss Albino mice using CCL(4) induced hepatotoxicity model. CONCLUSION: The results suggested that NPs of silymarin could successfully enhance its hepatoprotective effect by passive targeting and sustained release.