Cargando…
Exercise increases cutaneous nerve density in diabetic patients without neuropathy
Early diabetic neuropathy is characterized by loss of unmyelinated axons, resulting in pain, numbness, and progressive decline in intraepidermal nerve fiber density. Patients with type 2 diabetes, without neuropathy, were assigned to quarterly lifestyle counseling (N = 40) or structured, supervised...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241811/ https://www.ncbi.nlm.nih.gov/pubmed/25493275 http://dx.doi.org/10.1002/acn3.125 |
Sumario: | Early diabetic neuropathy is characterized by loss of unmyelinated axons, resulting in pain, numbness, and progressive decline in intraepidermal nerve fiber density. Patients with type 2 diabetes, without neuropathy, were assigned to quarterly lifestyle counseling (N = 40) or structured, supervised weekly exercise (N = 60) for 1 year. Distal leg IENFD significantly increased in the exercise cohort and remained unchanged in the counseling cohort (1.5 ± 3.6 vs. −0.1 ± 3.2 fibers/mm, P = 0.03). These results suggest preclinical injury to unmyelinated axons is potentially reversible, and that IENFD may be a responsive biomarker useful in future neuropathy prevention clinical trials. |
---|