Cargando…
Human Schistosoma haematobium Antifecundity Immunity Is Dependent on Transmission Intensity and Associated With Immunoglobulin G1 to Worm-Derived Antigens
BACKGROUND: Immunity that reduces worm fecundity and, in turn, reduces morbidity is proposed for Schistosoma haematobium, a parasite of major public health importance. Mathematical models of epidemiological trends suggest that antifecundity immunity is dependent on antibody responses to adult-worm-d...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241947/ https://www.ncbi.nlm.nih.gov/pubmed/25001462 http://dx.doi.org/10.1093/infdis/jiu374 |
Sumario: | BACKGROUND: Immunity that reduces worm fecundity and, in turn, reduces morbidity is proposed for Schistosoma haematobium, a parasite of major public health importance. Mathematical models of epidemiological trends suggest that antifecundity immunity is dependent on antibody responses to adult-worm-derived antigen. METHODS: For a Malian cohort (age, 5–29 years) residing in high-transmission fishing villages or a moderate-transmission village, worm fecundity was assessed using the ratio of urinary egg excretion to levels of circulating anodic antigen, a Schistosoma-specific antigen that is steadily secreted by adult worms. Fecundity was modeled against host age, infection transmission intensity, and antibody responses specific to soluble worm antigen (SWA), tegument allergen-like 1, and 28-kDa glutathione-S-transferase. RESULTS: Worm fecundity declined steadily until a host age of 11 years. Among children, host age and transmission were negatively associated with worm fecundity. A significant interaction term between host age and transmission indicates that antifecundity immunity develops earlier in high-transmission areas. SWA immunoglobulin G1 (IgG1) levels explained the effect of transmission on antifecundity immunity. CONCLUSION: Antifecundity immunity, which is likely to be protective against severe morbidity, develops rapidly during childhood. Antifecundity immunity is associated with SWA-IgG1, with higher infection transmission increasing this response at an earlier age, leading to earlier development of antifecundity immunity. |
---|