Cargando…
Swimming by reciprocal motion at low Reynolds number
Biological microorganisms swim with flagella and cilia that execute nonreciprocal motions for low Reynolds number (Re) propulsion in viscous fluids. This symmetry requirement is a consequence of Purcell’s scallop theorem, which complicates the actuation scheme needed by microswimmers. However, most...
Autores principales: | Qiu, Tian, Lee, Tung-Chun, Mark, Andrew G., Morozov, Konstantin I., Münster, Raphael, Mierka, Otto, Turek, Stefan, Leshansky, Alexander M., Fischer, Peer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4241991/ https://www.ncbi.nlm.nih.gov/pubmed/25369018 http://dx.doi.org/10.1038/ncomms6119 |
Ejemplares similares
-
Low Reynolds Number Swimming with Slip Boundary Conditions
por: Alshehri, Hashim, et al.
Publicado: (2020) -
Biogenic mixing induced by intermediate Reynolds number swimming in stratified fluids
por: Wang, Shiyan, et al.
Publicado: (2015) -
Swimming Back and Forth Using Planar Flagellar Propulsion at Low Reynolds Numbers
por: Khalil, Islam S. M., et al.
Publicado: (2017) -
Learning to cooperate for low-Reynolds-number swimming: a model problem for gait coordination
por: Liu, Yangzhe, et al.
Publicado: (2023) -
Geometric and numerical optimal control: application to swimming at low Reynolds number and magnetic resonance imaging
por: Bonnard, Bernard, et al.
Publicado: (2018)