Cargando…
Dose-Dependent Metabolic Alterations in Human Cells Exposed to Gamma Irradiation
Radiation exposure is a threat to public health because it causes many diseases, such as cancers and birth defects, due to genetic modification of cells. Compared with the past, a greater number of people are more frequently exposed to higher levels of radioactivity today, not least due to the incre...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4242643/ https://www.ncbi.nlm.nih.gov/pubmed/25419661 http://dx.doi.org/10.1371/journal.pone.0113573 |
Sumario: | Radiation exposure is a threat to public health because it causes many diseases, such as cancers and birth defects, due to genetic modification of cells. Compared with the past, a greater number of people are more frequently exposed to higher levels of radioactivity today, not least due to the increased use of diagnostic and therapeutic radiation-emitting devices. In this study, ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS)-based metabolic profiling was used to investigate radiation- induced metabolic changes in human fibroblasts. After exposure to 1 and 5 Gy of γ-radiation, the irradiated fibroblasts were harvested at 24, 48, and 72 h and subjected to global metabolite profiling analysis. Mass spectral peaks of cell extracts were analyzed by pattern recognition using principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA). The results showed that the cells irradiated with 1 Gy returned to control levels at 72 h post radiation, whereas cells irradiated with 5 Gy were quite unlike the controls; therefore, cells irradiated with 1 Gy had recovered, whereas those irradiated with 5 Gy had not. Lipid and amino acid levels increased after the higher-level radiation, indicating degradation of membranes and proteins. These results suggest that MS-based metabolite profiling of γ-radiation-exposed human cells provides insight into the global metabolic alterations in these cells. |
---|