Cargando…
Learning to rank-based gene summary extraction
BACKGROUND: In recent years, the biomedical literature has been growing rapidly. These articles provide a large amount of information about proteins, genes and their interactions. Reading such a huge amount of literature is a tedious task for researchers to gain knowledge about a gene. As a result,...
Autores principales: | Shang, Yue, Hao, Huihui, Wu, Jiajin, Lin, Hongfei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243090/ https://www.ncbi.nlm.nih.gov/pubmed/25474678 http://dx.doi.org/10.1186/1471-2105-15-S12-S10 |
Ejemplares similares
-
Learning to rank diversified results for biomedical information retrieval from multiple features
por: Wu, Jiajin, et al.
Publicado: (2014) -
NeuRank: learning to rank with neural networks for drug–target interaction prediction
por: Wu, Xiujin, et al.
Publicado: (2021) -
PASSerRank: Prediction of Allosteric Sites with Learning to Rank
por: Tian, Hao, et al.
Publicado: (2023) -
Low-Rank Regularization for Learning Gene Expression Programs
por: Ye, Guibo, et al.
Publicado: (2013) -
Low-Rank Deep Convolutional Neural Network for Multitask Learning
por: Su, Fang, et al.
Publicado: (2019)