Cargando…
Identifying disease genes by integrating multiple data sources
BACKGROUND: Now multiple types of data are available for identifying disease genes. Those data include gene-disease associations, disease phenotype similarities, protein-protein interactions, pathways, gene expression profiles, etc.. It is believed that integrating different kinds of biological data...
Autores principales: | Chen, Bolin, Wang, Jianxin, Li, Min, Wu, Fang-Xiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243092/ https://www.ncbi.nlm.nih.gov/pubmed/25350511 http://dx.doi.org/10.1186/1755-8794-7-S2-S2 |
Ejemplares similares
-
A fast and high performance multiple data integration algorithm for identifying human disease genes
por: Chen, Bolin, et al.
Publicado: (2015) -
In Silico Gene Prioritization by Integrating Multiple Data Sources
por: Chen, Yixuan, et al.
Publicado: (2011) -
Identifying Dynamic Protein Complexes Based on Gene Expression Profiles and PPI Networks
por: Li, Min, et al.
Publicado: (2014) -
Identifying cooperative transcription factors in yeast using multiple data sources
por: Lai, Fu-Jou, et al.
Publicado: (2014) -
Integration of multiple data sources to prioritize candidate genes using discounted rating system
por: Li, Yongjin, et al.
Publicado: (2010)