Cargando…
Supervised redundant feature detection for tumor classification
BACKGROUND: As a high dimensional problem, analysis of microarray data sets is a challenging task, where many weakly relevant or redundant features affect overall performance of classifiers. METHODS: The previous works used redundant feature detection methods to select discriminative compact gene se...
Autores principales: | Zeng, Xue-Qiang, Li, Guo-Zheng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243100/ https://www.ncbi.nlm.nih.gov/pubmed/25350857 http://dx.doi.org/10.1186/1755-8794-7-S2-S5 |
Ejemplares similares
-
Dimension reduction with redundant gene elimination for tumor classification
por: Zeng, Xue-Qiang, et al.
Publicado: (2008) -
Relevant and Non-Redundant Feature Selection for Cancer Classification and Subtype Detection
por: Rana, Pratip, et al.
Publicado: (2021) -
Feature Selection for Interpatient Supervised Heart Beat Classification
por: Doquire, G., et al.
Publicado: (2011) -
Semi-Supervised Feature Transformation for Tissue Image Classification
por: Watanabe, Kenji, et al.
Publicado: (2016) -
Supervised PolSAR Image Classification with Multiple Features and Locally Linear Embedding
por: Zhang, Qiang, et al.
Publicado: (2018)