Cargando…
Approximate Bayesian computation schemes for parameter inference of discrete stochastic models using simulated likelihood density
BACKGROUND: Mathematical modeling is an important tool in systems biology to study the dynamic property of complex biological systems. However, one of the major challenges in systems biology is how to infer unknown parameters in mathematical models based on the experimental data sets, in particular,...
Autores principales: | Wu, Qianqian, Smith-Miles, Kate, Tian, Tianhai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243104/ https://www.ncbi.nlm.nih.gov/pubmed/25473744 http://dx.doi.org/10.1186/1471-2105-15-S12-S3 |
Ejemplares similares
-
Stochastic approximation cut algorithm for inference in modularized Bayesian models
por: Liu, Yang, et al.
Publicado: (2021) -
Parameter Inference for Computational Cognitive Models with Approximate Bayesian Computation
por: Kangasrääsiö, Antti, et al.
Publicado: (2019) -
Approximate Bayesian Computation for Discrete Spaces
por: Auzina, Ilze A., et al.
Publicado: (2021) -
Topological approximate Bayesian computation for parameter inference of an angiogenesis model
por: Thorne, Thomas, et al.
Publicado: (2022) -
“Exact” and Approximate Methods for Bayesian Inference: Stochastic Volatility Case Study
por: Shapovalova, Yuliya
Publicado: (2021)