Cargando…
Enhancing the accuracy of knowledge discovery: a supervised learning method
BACKGROUND: The amount of biomedical literature available is growing at an explosive speed, but a large amount of useful information remains undiscovered in it. Researchers can make informed biomedical hypotheses through mining this literature. Unfortunately, popular mining methods based on co-occur...
Autores principales: | Cheng, Liangxi, Lin, Hongfei, Zhou, Feng, Yang, Zhihao, Wang, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243114/ https://www.ncbi.nlm.nih.gov/pubmed/25474584 http://dx.doi.org/10.1186/1471-2105-15-S12-S9 |
Ejemplares similares
-
Semi-supervised method for biomedical event extraction
por: Wang, Jian, et al.
Publicado: (2013) -
SemaTyP: a knowledge graph based literature mining method for drug discovery
por: Sang, Shengtian, et al.
Publicado: (2018) -
Gene Function Prediction Based on the Gene Ontology Hierarchical Structure
por: Cheng, Liangxi, et al.
Publicado: (2014) -
Supervised Learning Based Hypothesis Generation from Biomedical Literature
por: Sang, Shengtian, et al.
Publicado: (2015) -
Integrating Various Resources for Gene Name Normalization
por: Hu, Yuncui, et al.
Publicado: (2012)