Cargando…
A group LASSO-based method for robustly inferring gene regulatory networks from multiple time-course datasets
BACKGROUND: As an abstract mapping of the gene regulations in the cell, gene regulatory network is important to both biological research study and practical applications. The reverse engineering of gene regulatory networks from microarray gene expression data is a challenging research problem in sys...
Autores principales: | Liu, Li-Zhi, Wu, Fang-Xiang, Zhang, Wen-Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243122/ https://www.ncbi.nlm.nih.gov/pubmed/25350697 http://dx.doi.org/10.1186/1752-0509-8-S3-S1 |
Ejemplares similares
-
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016) -
Time-lagged Ordered Lasso for network inference
por: Nguyen, Phan, et al.
Publicado: (2018) -
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
por: Oh, Jung Hun, et al.
Publicado: (2014) -
A computational framework for gene regulatory network inference that combines multiple methods and datasets
por: Gupta, Rita, et al.
Publicado: (2011) -
Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother
por: Khan, Jehandad, et al.
Publicado: (2014)