Cargando…
mirMark: a site-level and UTR-level classifier for miRNA target prediction
MiRNAs play important roles in many diseases including cancers. However computational prediction of miRNA target genes is challenging and the accuracies of existing methods remain poor. We report mirMark, a new machine learning-based method of miRNA target prediction at the site and UTR levels. This...
Autores principales: | Menor, Mark, Ching, Travers, Zhu, Xun, Garmire, David, Garmire, Lana X |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4243195/ https://www.ncbi.nlm.nih.gov/pubmed/25344330 http://dx.doi.org/10.1186/s13059-014-0500-5 |
Ejemplares similares
-
Granatum: a graphical single-cell RNA-Seq analysis pipeline for genomics scientists
por: Zhu, Xun, et al.
Publicado: (2017) -
Cox-nnet: An artificial neural network method for prognosis prediction of high-throughput omics data
por: Ching, Travers, et al.
Publicado: (2018) -
Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage
por: Poirion, Olivier, et al.
Publicado: (2018) -
Power analysis and sample size estimation for RNA-Seq differential expression
por: Ching, Travers, et al.
Publicado: (2014) -
Single-Cell Transcriptomics Bioinformatics and Computational Challenges
por: Poirion, Olivier B., et al.
Publicado: (2016)